
Aachen Institute for Advanced Study in Computational Engineering Science

Preprint: AICES-2011/01-3

16/January/2011

Knowledge-Based Automatic Generation of Partitioned

Matrix Expressions

D. Fabregat-Traver and P. Bientinesi

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through

grant GSC 111 is gratefully acknowledged.

©D. Fabregat-Traver and P. Bientinesi 2011. All rights reserved

List of AICES technical reports: http://www.aices.rwth-aachen.de/preprints

http://www.aices.rwth-aachen.de/preprints

Knowledge-Based Automatic Generation
of Partitioned Matrix Expressions

Diego Fabregat-Traver Paolo Bientinesi

AICES, RWTH Aachen

52062, Aachen, Germany

{fabregat,pauldj}@aices.rwth-aachen.de

ABSTRACT
Our objective is the automatic generation of algorithms and
routines for matrix equations. We aim for a fully automated
system that from the sole description of a target equation
creates multiple algorithms without any human interven-
tion. We achieve automation through a methodology based
on formal methods and program correctness. The method-
ology consists of three main stages. The first stage yields
the core object of the process, the Partitioned Matrix Ex-
pression (PME), a decomposition of the target problem into
simpler sub-problems. In the second stage the PME is used
to identify predicates, the Loop Invariants, that are used
to set up the skeleton of a family of proofs of correctness.
In the third and last stage the actual algorithms are then
constructed so that they satisfy the proof of correctness. In
this paper we focus on the first stage of the process, the
automatic generation of Partitioned Matrix Expressions. In
particular, we discuss the steps leading to a PME and the
knowledge necessary for a symbolic system to perform such
steps. We also introduce Cl1ck, a prototype system that
generates PMEs automatically.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Alge-
braic algorithms; D.1.2 [Programming Techniques]: Au-
tomatic Programming

General Terms
Automation, Algorithms

Keywords
Partitioned Matrix Expression, Algorithm Generation, Pat-
tern Matching, Rewrite Rules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2007 ACM 0-12345-67-8/90/01 ...$10.00.

Figure 1: The three main stages in the process of derivation
of algorithms.

1. INTRODUCTION
The computing landscape offers an amazing variety of ar-

chitectures and programming paradigms1, each one affect-
ing heavily performance and possibly even accuracy of nu-
merical algorithms. In order to attain high-performance in
such diverse scenarios, for every target problem not one but
many different algorithms are needed [3]. We envision the
automatic generation of such variety of algorithms. Our fo-
cus is on matrix equations: we aim at a symbolic system
that takes as input the description of a target equation Eq
and—without any human intervention—returns a family of
algorithms that solve Eq.

One of the authors presented a methodology, based on
formal methods and program correctness, to derive fami-
lies of algorithms [1]. The derivation process, consisting of
three main stages, is systematic and entirely determined by
the mathematical description of the input equation [2]. The
process is depicted in Fig. 1. The input is the description
of a target equation. In the first stage, the Partition Matrix
Expression (PME) for the equation is obtained. A PME is a
matrix-like object that exposes how an operation can be de-
composed into simpler sub-problems. An example is shown
in Box 1. Once the PME is available, the second stage of the

�
XT = Ω(LTL, U, CT)

XB = Ω(LBR, U, CB − LBLXT)

�

Box 1: Partitioned Matrix Expression for the triangular
Sylvester equation.

1Current processors comprise between 2 and 40 cores with
frequencies from 800 up to 3000 MHz, include between 1
and 3 levels of (shared) cache, and rely on memories ranging
from 2 to dozens of GBs; they may be found in combination
with one or more GPUs, and assembled in flat or hierar-
chical fashion to form clusters and supercomputers. The
main programming paradigms for such diverse architectures
include message passing, multi-threading, data parallelism,
and hybrid approaches.

Figure 2: Steps for the automatic generation of PMEs.

process deals with the identification of boolean predicates,
the Loop-Invariants [4], that describe the intermediate state
of computation for the sought-after algorithms. In the third
and last stage, each Loop-Invariant is used to set up a proof
of correctness around which the algorithm is finally built.

This paper centers around the first stage of the derivation
process, the generation of PMEs; the objective is automa-
tion, in the form of a symbolic system. First, we identify the
minimum amount of knowledge about the operation required
by a system to perform all the subsequent stages automat-
ically. We introduce a formalism to input into the system
the target equation along with the auxiliary knowledge. We
then describe the process for transforming an input equation
into PMEs. As Fig. 2 shows, such process involves three
steps: 1) the partitioning of the operands in the equation,
2) matrix arithmetic involving the partitioned operands, and
3) a sequence of iterations, each consisting of algebraic ma-
nipulation and pattern matching. We demonstrate that the
process can indeed be automated through Cl1ck2, a sym-
bolic system that performs all the steps involved in the PME
generation.

The paper is organized as follows. In Section 2 we cate-
gorize the input needed by a symbolic system. Partitionings
of the operands and inheritance of properties are discussed
in Section 3.1, while in Section 3.2 we describe how to use
partitionings to obtain PMEs. We draw conclusion in Sec-
tion 4.

2. INPUT TO THE SYSTEM
Our first concern is to establish how a target operation

should be formally described. We use the Cholesky factor-
ization as an example: given a symmetric positive definite
(SPD) matrix A, the goal is to find a lower triangular ma-
trix L such that LLT = A. We ask two questions: What
is a suitable description of the operation? Does such a de-
scription provide enough information for a symbolic system
to carry out all the derivation stages? The most common
formula to identify the Cholesky factorization is

LLT = A; (1)

the equation is self-explanatory to anyone who has familiar-
ity with numerical linear algebra: a) the letter L is used to
denote lower triangular matrices, b) the unknown quantity
lays in the left-hand side of Eq. (1), c) the known quantity
is in the right-hand side, and d) the existence of the solution
is assumed implicitly.

Even if it were explicitly stated that L is lower triangular,
A is SPD, and their size matches, the specification would
still not identify a Cholesky factorization unequivocally. For
example, what happens if the left and right-hand sides of
Eq. (1) are flipped?

A = LLT (2)
2The name Cl1ck epitomizes the idea that the effort a user
has to make to obtain algorithms consists of just one click.

Is Eq. (2) still a representation of the Cholesky factorization
of A, or it instead represents a matrix product in which A
is the unknown, and the lower triangular matrix L is mul-
tiplied by its transpose? No definitive answer can be given
unless each operand is labeled as known (input) or unknown
(output).

Let us now consider a formula representing a simple gen-
eralization of Eq. (2):

XY = Z. (3)

Depending on which of the operands X,Y and Z are known,
the formula represents a matrix-matrix multiplication, the
solution of a system of equations, a matrix factorization, or
a tautology. In Table 1 we relate the assumptions made
for each of the operands to the possible interpretations of
Eq. (3).

Although simple, the example already leads to a number
of observations. As humans, in describing an equation we
rely on implicit knowledge and notational conventions (let-
ters, position, properties). However, our notation is often
ambiguous. Since we are aiming for a fully-automated sys-
tem, i.e., without any human intervention, we need a formal-
ism to unequivocally describe a target equation. We choose
the language traditionally used to reason about program cor-
rectness: equations shall be specified by means of the predi-
cates Precondition (Ppre) and Postcondition (Ppost) [4]. The
precondition enumerates the operands that appear in the
equation and describes their properties, while the postcon-
dition specifies the equation to be solved.

Box 2 contains the description of the Cholesky factoriza-
tion; the notation L = Γ(A) indicates that L is the Cholesky
factor of A. Even though the definition is unambiguous, it

L = Γ(A) ≡

Ppre : {Unknown(L) ∧ LowerTriangular(L) ∧
Known(A) ∧ SPD(A)}

Ppost : {LLT = A}

Box 2: Formal description for the Cholesky factorization.

does not include all the information needed by a symbolic
system to fully automate the derivation process. In Sec. 2.1
we discuss how a system expands its knowledge by “learning
of” new equations, and in Sec. 3 we overview the ground
knowledge that a system must possess relative to matrix
partitioning and inheritance of properties.

2.1 Pattern Learning
We refer to the pair of predicates in Box 2 as the pattern

that identifies the Cholesky factorization. Such a pattern es-
tablishes that matrices L and A are one the Cholesky factor
of the other provided that the constraints in the precondi-
tion are satisfied, and L and A are related as dictated in the
postcondition (LLT = A). For instance, in the expression

XXT = A−BC,

in order to determine whether X = Γ(A − BC), the fol-
lowing facts need to be asserted: i) X is an unknown lower
triangular matrix; ii) the expression A − BC is a known
quantity (A,B and C are known); iii) the matrix A−BC is
symmetric positive definite.

Operation X Y Z

Matrix-matrix multiplication known known unknown

Linear system (1) unknown known, known

non-singular

Linear system (2) known, unknown known

non-singular

Cholesky factorization unknown, transpose of X known,

lower triangular, SPD

LU decomposition unknown, unknown, known,

lower triangular, upper triangular ∃ LU(Z)

unit diagonal

QR decomposition unknown, unknown, known

orthonormal upper triangular

Tautology known known known

Table 1: Relation between properties of the operands and the interpretation of XY = Z.

The strategy for decomposing an equation in terms of sim-
pler problems greatly relies on pattern matching. In the next
section we describe how matrix equations can be rewritten
in terms of sub-matrices, resulting in expressions seemingly
more complicated than the initial formulation. Such expres-
sions are thus inspected to find segments corresponding to
known patterns.

Our system Cl1ck initially only knows the patterns for
a basic set of operations: addition, multiplication, inver-
sion, and transposition of matrices, vectors and scalars. This
information is hard-coded. More complex patterns are in-
stead discovered during the process of PME generation. For
instance, the first time the PME for the Cholesky factor-
ization is generated, Cl1ck learns and stores the pattern
specified by Box 2. Thanks to such patterns it will then
be possible to identify that a Cholesky factorization may be
decomposed into a combination of triangular systems and
simpler Cholesky factorizations. As Cl1ck’s pattern knowl-
edge increases, also does its capability of tackling complex
operations.

3. FROM DESCRIPTIONS TO PMES
In this section we pedantically illustrate all the steps per-

formed by Cl1ck to transform the description of the input
equation into one or more PMEs. The idea is to first rewrite
the postcondition in terms of partitioned matrices and then
apply pattern matching to identify known operations. To
this end, we introduce a set of rules to partition and com-
bine operands and to assert properties of expressions in-
volving sub-operands. The application of these rules to the
postcondition yields a predicate called partitioned postcondi-
tion. From there, an iterative process consisting of algebraic
manipulation and pattern matching takes us to the PMEs.

3.1 Partitioning and Inheritance
The discussion commences with a set of rules for parti-

tioning matrices and vectors and for transferring properties
to sub-matrices and sub-vectors. These rules are part of the
basic engine of Cl1ck. Due to constraints imposed by both

the structure of the input operands and the postcondition,
only few partitioning rules will be admissible.

3.1.1 Operands partitioning and direct inheritance

As shown in Box 3, a generic matrix A can be partitioned
in four different ways. The 1×1 rule (Box 3(d)) is special as
it does not affect the operand; we refer to it as the identity.
For a vector, only the 2× 1 and 1× 1 rules apply, while for
scalars only the identity is admissible. When referring to any
of the parts resulting from a non-identity rule, we use the
terms sub-matrix or sub-operand, and for 2×2 partitionings
we also use the term quadrant.

Am×n →
�
ATL ATR

ABL ABR

�

where ATL is k1 × k2

(a) 2× 2 rule

Am×n →
�
AT

AB

�

where AT is k1 × n

(b) 2× 1 rule

Am×n →
�
AL AR

�

where AL is m× k2

(c) 1× 2 rule

Am×n →
�
A
�

where A is m× n

(d) 1× 1 (identity) rule

Box 3: Rules for partitioning a generic matrix operand
A. We use the subscript letters T , B, L, and R for Top,
Bottom, Left, and Right, respectively.

The inheritance of properties plays an important role in
subsequent stages of the algorithm generation process. Thus,
when the operands have a special structure, it is beneficial
to choose partitioning rules that respect the structure. For
a symmetric matrix, for instance, it is convenient to cre-
ate sub-matrices that exhibit the same property. The 1× 2
and 2 × 1 rules break the structure of a symmetric matrix,
as neither of the two sub-matrices inherit the symmetry.
Therefore, we only allow 1 × 1 or 2 × 2 partitionings, with
the extra constraint that the TL quadrant has to be square.

Box 4 illustrates the admissible partitionings for lower tri-

angular (L) and symmetric (M) matrices. On the left, the
identity rule is applied and the operands remain unchanged.
On the right instead, a constrained 2× 2 rule is applied, so
that some of the resulting quadrants inherit properties. For
a lower triangular matrix L, both LTL and LBR are square
and lower triangular, LTR is zero, and LBL is a generic
matrix. For a symmetric matrix M , both MTL and MBR

are square and symmetric, and MBL = MT
TR (or vice versa

MTR = MT
BL). Each matrix type allows specific partitioning

rules and inheritance of properties; for triangular, diagonal,
symmetric, and SPD matrices such knowledge is hard-coded
into Cl1ck.

Lm×m →
�
L
�

where L is m×m
or

Lm×m →
�
LTL 0
LBL LBR

�

where LTL is k × k

(a) Viable partitionings for a lower triangular matrix.

Mm×m →
�
M

�

where M is m×m
or

Mm×m →
�
MTL MT

BL

MBL MBR

�

where MTL is k × k

(b) Viable partitionings for a symmetric matrix.

Box 4: Partitioning rules for structured matrices.

3.1.2 Theorem-aware inheritance

Although frequent, direct inheritance of properties is only
the simplest form of inheritance. Here we expose a more
complex situation. Let A be an SPD matrix. Because of
symmetry, the only admissible partitioning rules are the ones
listed in Box 4(b); applying the 2× 2 rule, we obtain

Am×m →
�
ATL AT

BL

ABL ABR

�

where ATL is k × k

, (4)

and both ATL and ABR are symmetric. More properties
about the quadrants of A can be stated. For example, it is
well known that if A is SPD, then every principal sub-matrix
of A is also SPD. As a consequence, the quadrants ATL and
ABR inherit the SPD property. Moreover, it can be proved
that given a 2 × 2 partitioning of an SPD matrix as in (4),
the following matrices (known as Schur complements) are
also symmetric positive definite:

• ATL −AT
BLA

−1
BRABL,

• ABR −ABLA
−1
TLA

T
BL.

The knowledge emerging from this theorem is hard-coded
into Cl1ck. In Sec. 3.2 it will become apparent how this
information is essential for the generation of PMEs.

3.1.3 Combining the partitionings

The admissible rules are now applied to rewrite the post-
condition. Since in general each operand can be decomposed
in multiple ways, not one, but many partitioned postcondi-
tions are created. As an example, in the Cholesky factor-
ization (Box 2) both the 1× 1 and 2× 2 rules are viable for
both L and A, leading to four different rewrite sets:

• Both L and A are partitioned in 1× 1.

• L and A are partitioned in 1×1 and 2×2, respectively.

• L and A are partitioned in 2×2 and 1×1, respectively.

• Both L and A are partitioned in 2× 2.

Table 2 contains the resulting four partitioned postcon-
ditions. It is apparent that some of the expressions in the
fourth column are not algebraically well defined. Conse-
quently, in addition to constraints on each individual oper-
and, the rules need to be such that the partitioned operands
can be combined together according to standard matrix arith-
metic. For instance, in the expression X + Y , if the 2 × 1
rule is applied to matrix X, the + operator imposes that the
same rule is applied to Y too.

With reference to Table 2, the rules in the second and
third rows lead to ill-defined partitioned postconditions, thus
they should be discarded. The second row leads to an ex-
pression whose left-hand and right-hand sides are a 1 × 1
and a 2 × 2 object, respectively. The reverse is true in the
third row. Despite leading to a well defined expression, the
first row of the table should be discarded too, as the goal is a
Partitioned Matrix Expression and it leads to an expression
in which none of the operands has been partitioned. In light
of these additional restrictions, the only viable set of rules
for the Cholesky factorization is the one given in the last
row of Table 2, with the additional constraint that the TL
quadrants are square.

In summary, partitioning rules must satisfy both the con-
straints due the nature of the individual operands, and those
due to the operators appearing in the postcondition. In the
next section we detail the algorithm used by Cl1ck to gen-
erate only the viable sets of partitioning rules.

3.1.4 Automation

We show how Cl1ck performs the partitioning process au-
tomatically. The naive approach would be to exhaustively
search among all the rules applied to all the operands, lead-
ing to a search space of exponential size in the number of
operands. Instead, Cl1ck utilizes an algorithm that tra-
verses once the tree that represents the postcondition in pre-
fix notation and yields only the viable sets of partitioning
rules.

The algorithm builds around two main ideas: 1) the prop-
erties of an operand impose restrictions on the viable rules;
2) the operators in the postcondition constraint the parti-
tionings of their operands. The input to the algorithm is
the predicates Ppre and Ppost for a target operation. As an
example we look at the triangular Sylvester equation

LX +XU = C,

defined using our formalism as in Box 5.

X = Ω(L,U,C) ≡

Ppre : {Known(L) ∧ LowerTriangular(L)∧
Known(U) ∧ UpperTriangular(U)∧
Known(C) ∧ Unknown(X)}

Ppost : {LX +XU = C}.

Box 5: Formal description for the triangular Sylvester equa-
tion.

L A Partitioned Postcondition

1 L → (L) A → (A) (L) (L)T = (A)

2 L → (L) A →
�
ATL AT

BL

ABL ABR

�
(L) (L)T =

�
ATL AT

BL

ABL ABR

�

3 L →
�
LTL 0

LBL LBR

�
A → (A)

�
LTL 0

LBL LBR

��
LT

TL LT
BL

0 LT
BR

�
= (A)

4 L →
�
LTL 0

LBL LBR

�
A →

�
ATL AT

BL

ABL ABR

� �
LTL 0

LBL LBR

��
LT

TL LT
BL

0 LT
BR

�
=

�
ATL AT

BL

ABL ABR

�

Table 2: Application of the different combinations of partitioning rules to the postcondition.

Figure 3: Tree representation of the equation LX+XU = C.

First, the algorithm transforms the postcondition to pre-
fix notation (Fig. 3) and collects the name and the dimen-
sionality of each operand. A list of disjoint sets, one per
dimension of the operands is then created. This initial list
for the Sylvester equation is

[{Lr}, {Lc}, {Ur}, {Uc}, {Cr}, {Cc}, {Xr}, {Xc}] ,

where r and c stand for rows and columns respectively. The
algorithm traverses the tree, in a post-order fashion, to de-
termine if and which dimensions are bound together. Two
dimensions are bound to one another if the partitioning of
one implies the partitioning of the other. If two dimensions
are found to be bound, then their corresponding sets are
merged together. As the algorithm moves from the leaves to
the root of the tree, it keeps track of the dimensions of the
operands’ subtrees.
The algorithm starts by visiting the node corresponding

to the operand L. There it establishes that the identity and
the 2 × 2 partitioning rules are the only admissible ones.
Thus, the rows and the columns of L are bound together,
and the list becomes

[{Lr, Lc}, {Ur}, {Uc}, {Cr}, {Cc}, {Xr}, {Xc}] .

The next node to be visited is that of the operand X. Since
X has no specific structure, its analysis causes no bindings.
Then, the node corresponding to the ∗ operator is analyzed.
The dimensions of L and X have to agree according to the
matrix product, therefore, a binding between Lc and Xr is
imposed:

[{Lr, Lc, Xr}, {Ur}, {Uc}, {Cr}, {Cc}, {Xc}] .

At this stage the dimensions of the product LX are also
determined to be Lr ×Xc.
The procedure continues by analyzing the subtree corre-

sponding to the product XU . Again, the lack of a specific

structure in X does not cause any binding and the algo-
rithm follows with the study of the node for the operand U .
The triangularity of U imposes a binding between Ur and
Uc leading to

[{Lr, Lc, Xr}, {Ur, Uc}, {Cr}, {Cc}, {Xc}] .

Then, the node for the ∗ operator is analyzed, and a binding
between Xc and Ur is found:

[{Lr, Lc, Xr}, {Ur, Uc, Xc}, {Cr}, {Cc}] .

The dimensions of the product XU are determined to be
Xr × Uc.

The next node to be considered is the corresponding to
the + operator. It imposes a binding between the rows and
the columns of the products LX and XU , i.e., between Lr

and Xr, and between Xc and Uc. Since each of these pairs
of dimensions already belong to the same set, no modifica-
tions are made to the list. The algorithm establishes that the
dimensions of the + node are Lr×Uc. Next, the node associ-
ated to the operand C is analyzed. Since C has no particular
structure, its analysis does not cause any modification. The
last node to be processed is the equality operator =. This
node binds the rows of C to those of L (Cr, Lr) and the
columns of C to those of U (Cc, Uc). The final list consists
of two separate groups of dimensions:

[{Lr, Lc, Xr, Cr}, {Ur, Uc, Xc, Cc}] .

Having created g groups of bound dimensions, the algo-
rithm generates 2g combinations of rules (the dimensions
within each group being either partitioned or not), resulting
in a family of partioned postconditions, one per combination.
In practice, since the combination including solely identity
rules does not lead to a PME, only 2g − 1 combinations are
acceptable. In our example the algorithm found two groups
of bound dimensions, therefore three possible combinations
of rules are generated: 1) only the dimensions in the second
group are partitioned, 2) only the dimensions in the first
group are partitioned, or 3) all dimensions are partitioned.
The resulting partitionings are listed in Table 3.

This very same process is used to find the bound dimen-
sions of every target operation and, accordingly, only each
and every viable combination of partitioning rules is gener-
ated.

3.2 Matrix Arithmetic and Pattern Matching
This section covers the second and third steps in the PME

generation stage (Fig. 2). Within the Matrix Arithmetic

L U C X

1 (L)

�
UTL UTR

0 UBR

� �
CL CR

� �
XL XR

�

2

�
LTL 0

LBL LBR

�
(U)

�
CT

CB

� �
XT

XB

�

3

�
LTL 0

LBL LBR

� �
UTL UTR

0 UBR

� �
CTL CTR

CBL CBR

� �
XTL XTR

XBL XBR

�

Table 3: Viable combinations of partitioning rules for the
Sylvester equation.

step, symbolic arithmetic is performed and the = operator
is distributed over the partitions, originating multiple equa-
tions. In Eq. 5 we display the result of these actions for the
Cholesky factorization, where the symbol � means that the
equation in the top-right quadrant is the transpose of the
bottom-left one.

�
LTL 0

LBL LBR

��
LT
TL LT

BL

0 LT
BR

�
=

�
ATL AT

BL

ABL ABR

�
⇒

�
LTLLT

TL = ATL �

LBLLT
TL = ABL LBLLT

BL + LBRLT
BR = ABR

�
. (5)

The Pattern Matching step delivers the sought-after PME.
Success of this process is dependent on the ability to identify
expressions with known structure and properties. In order to
facilitate pattern matching, we force equations to be in their
canonical form. We state that an equation is in canonical
form if a) its left-hand side only consists of those terms that
contain at least one unknown object, and b) its right-hand
side only consists of those terms that solely contain known
objects.

This last step carries out an iterative process compris-
ing three separate actions: 1) structural pattern match-
ing: equations are matched against known patterns; 2) once
a known pattern is matched, the unknown operands are
flagged as known and the equation becomes a tautology;
3) algebraic manipulation: the remaining equations are re-
arranged in canonical form. We clarify the iterative process
by illustrating, action by action, how Cl1ck works through
the Cholesky factorization. The first iteration is depicted in
Box 6, in which the top formula displays the initial state. In
all the next expressions, green and red are used to highlight
the known and unknown operands, respectively.

Structural pattern matching
All the equations in Box 6(a) are in canonical form.
Through pattern matching, the top-left quadrant is the
only one for which a match is found. Cl1ck identifies
the equation as a Cholesky factorization (Box 6(b)),
since the pattern in Box 2 is satisfied.

Exposing new available operands
Having matched the top-left equation, Cl1ck turns the
unknown operand LTL into LTL, and propagates the
information to all the other quadrants (Box 6(c)). As
a result, the top-left equation becomes a tautology.

Algebraic manipulation
All the remaining equations are still in canonical form,
thus no operation takes place (Box 6(d)).

�
LTLL

T
TL = ATL �

LBLL
T
TL = ABL LBLL

T
BL + LBRL

T
BR = ABR

�

(a) Initial state.

�
LTL = Γ(ATL) �

LBLL
T
TL = ABL LBLL

T
BL + LBRL

T
BR = ABR

�

(b) Top-left equation is identified as a Cholesky sub-
problem.

LTL = Γ(ATL) �

LBL LT
TL = ABL LBLL

T
BL + LBRL

T
BR = ABR

(c) LTL becomes a known operand for the rest of equa-
tions.

�
LTL = Γ(ATL) �
LBLL

T
TL = ABL LBLL

T
BL + LBRL

T
BR = ABR

�

(d) There is no need for algebraic manipulation.

Box 6: First iteration towards the PME generation.

In this first iteration, one unknown operand, LTL, has be-
come known, and one equation has turned into a tautology.
The knowledge encoded in such a tautology is of importance
for a subsequent iteration. The second iteration is shown
in Box 7.

Structural pattern matching
Box 7(a) reproduces the final state from the previous
iteration. Among the two outstanding equations, the
bottom-left one is identified (Box 7(b)), as it matches
the pattern of a triangular system of equations with
multiple right-hand sides (trsm). The pattern for a
trsm is

{XLT = B ∧ Output(X) ∧ Input(L) ∧
LowerTriangular(L) ∧ Input(B)}.

For the sake of brevity, we assume that Cl1ck had
learned such pattern from a previous derivation; in
practice, in case the system does not know the pattern,
a nested task of PME generation would be initiated,
yielding the required pattern.

Exposing new available operands
Once the trsm is identified, the output operand LBL

becomes available and turns to green in the bottom-
right quadrant (Box 7(c)).

Algebraic manipulation
The bottom-right equation is not in canonical form
anymore: the product LBLL

T
BL, now a known quan-

tity, does not lay in the right-hand side. A simple ma-
nipulation brings the equation back to canonical form
(Box 7(d)).

The process continues until all the equations are turned
into tautologies. The third and final iteration for the Cho-
lesky factorization is shown in Box 8, where the top formula
replicates the final state from the previous iteration.

�
LTL = Γ(ATL) �

LBLL
T
TL = ABL LBLL

T
BL + LBRL

T
BR = ABR

�

(a) Initial state.

�
LTL = Γ(ATL) �

LBL = ABLL
−T
TL LBLL

T
BL + LBRL

T
BR = ABR

�

(b) Bottom-left equation is identified as a triangular sys-
tem of equations.

�
LTL = Γ(ATL) �

LBL = ABLL
−T
TL LBL LT

BL + LBRL
T
BR = ABR

�

(c) LBL becomes a known operand.

�
LTL = Γ(ATL) �

LBL = ABLL
−T
TL LBRL

T
BR = ABR − LBLL

T
BL

�

(d) State after the algebraic manipulation.

Box 7: Second iteration towards the PME generation.

Structural pattern matching
Only one equation, the bottom-right one, remains un-
processed. At a first glance, one might recognize a
Cholesky factorization, but the corresponding pattern
in Box 2 requires A to be SPD. The question is whether
the expression ABR−LBLL

T
BL represents an SPD ma-

trix. In order to answer the question, Cl1ck applies
rewrite rules and symbolic simplifications.

In Sec. 3.1.4 we explained that the following facts re-
garding the quadrants of A are known:

• SPD(ATL)

• SPD(ABR)

• SPD(ATL −AT
BLA

−1
BRABL)

• SPD(ABR −ABLA
−1
TLA

T
BL)

In order to determine whether ABR−LBLL
T
BL is equiv-

alent to any of the expressions listed above, Cl1ck
makes use of the knowledge acquired throughout the
previous iterations. Specifically, in the first two itera-
tions it was discovered that

• LTLL
T
TL = ATL, and

• LBL = ABLL
−T
TL .

Using these tautologies as rewrite rules, the expression
ABR − LBLL

T
BL is manipulated. First, the equality

LBL = ABLL
−T
TL is used to replace the instances of

LBL, yielding ABR − ABLL
−T
TLL

−1
TLA

T
BL, and equiva-

lently, ABR − ABL(LTLL
T
TL)

−1AT
BL. Then, by virtue

of the tautology LTLL
T
TL = ATL, LTLL

T
TL is replaced

by ATL, yielding ABR − ABLA
−1
TLA

T
BL. Now, this ex-

pression is known to be SPD. Thanks to these manipu-
lations, Cl1ck successfully associates the bottom right
equation with the pattern for a Cholesky factorization.

Exposing new available operands
Once the expression in the bottom-right quadrant is

identified, the system exposes the quantity LBR as
known. Since no equation is left, the process completes
and the PME—formed by the three tautologies—is re-
turned as output.

�
LTL = Γ(ATL) �

LBL = ABLL
−T
TL LBRL

T
BR = ABR − LBLL

T
BL

�

(a) Initial state.

�
LTL = Γ(ATL) �

LBL = ABLL
−T
TL LBR = Γ(ABR − LBLL

T
BL)

�

(b) Bottom-right equation is identified as a Cholesky
factorization.

�
LTL = Γ(ATL) �

LBL = ABLL
−T
TL LBR = Γ(ABR − LBLL

T
BL)

�

(c) LBR becomes a known operand.

�
LTL = Γ(ATL) �

LBL = ABLL
−T
TL LBR = Γ(ABR − LBLL

T
BL)

�

(d) Final PME.

Box 8: Final iteration towards the PME generation.

By means of the described process, PMEs for a target
equation are automatically generated. The PME for the
Cholesky factorization is given in Box 9.

�
LTL = Γ(ATL) �

LBL = ABLL
−T
TL LBR = Γ(ABR − LBLL

T
BL)

�

Box 9: Partitioned Matrix Expression for the Cholesky fac-
torization.

3.3 Non-Uniqueness of the PME
For the Cholesky factorization, Cl1ck identifies that only

one set of partitioning rules is feasible. This corresponds to
one way of decomposing the problem and to the generation
of one PME. In general the PME is not unique as multiple
sets of viable rules may be found for one target operation.
In fact, each set leads to a different problem decomposition
and a different PME. To illustrate such a situation, we look
once more at the triangular Sylvester equation (Box 5).

The procedure described in Sec. 3.1.4 is used to obtain
the sets of admissible partitioning rules, listed in Table 3.
Each of these sets of rules are then applied to the postcon-
dition equation to obtain the associated partitioned postcon-
ditions, shown in Table 4 (left). By applying the iterative
process described in Sec. 3.2 to each of the partitioned post-
conditions, three PMEs are generated: Table 4 (right). In
Box 10 we illustrate the steps performed by Cl1ck to trans-
form the second partitioned postcondition into a PME.

Partitioned Postcondition Partitioned Matrix Expression

1 (L)
�
XL XR

�
+

�
XL XR

��
UTL UTR

0 UBR

�
=

�
CL CR

� �
XL = Ω(L,UTL, CL) XR = Ω(L,UBR, CR − XLUTR)

�

2

�
LTL 0

LBL LBR

��
XT

XB

�
+

�
XT

XB

�
(U) =

�
CT

CB

� �
XT = Ω(LTL, U, CT)

XB = Ω(LBR, U, CB − LBLXT)

�

3

�
LTL 0

LBL LBR

��
XTL XTR

XBL XBR

�
+

�
XTL XTR

XBL XBR

��
UTL UTR

0 UBR

�

=

�
CTL CTR

CBL CBR

�

�
XTL XTR

XBL XBR

�
=

Ω(LTL, UTL, CTL)
Ω(LTL, UBR,

CTR − XTLUTR)

Ω(LBR, UTL,

CBL − LBLXTL)

Ω(LBR, UBR,

CBR − LBLXTR − XBLUTR)

Table 4: Partitioned postconditions and Partitioned Matrix Expressions for the triangular Sylvester equation.

�
LTLXT +XTU = CT

LBLXT + LBRXB +XBU = CB

�

(a) Initial state.

�
XT = Ω(LTL, U, CT)

LBLXT + LBRXB +XBU = CB

�

(b) Top equation identified as a
Sylvester equation, where all the input
operands are known.

 XT = Ω(LTL, U, CT)

LBL XT + LBRXB +XBU = CB

(c) XT becomes available for the bottom
equation.

�
XT = Ω(LTL, U, CT)

LBRXB +XBU = CB − LBLXT

�

(d) State after algebraic manipula-
tion.

�
XT = Ω(LTL, U, CT)

XB = Ω(LBR, U, CB − LBLXT)

�

(e) Bottom equation is also identified
as a Sylvester equation.

�
XT = Ω(LTL, U, CT)

XB = Ω(LBR, U, CB − LBLXT)

�

(f) Resulting PME.

Box 10: PME generation for one of the possible partitionings of the Sylvester equation.

4. CONCLUSIONS
The work we presented sets the ground for the develop-

ment of a symbolic system that, from the sole description of
an operation, generates algorithms automatically. The core
of our methodology stands in the PME. A PME encapsu-
lates the information about the target operation in a way
that facilitates the subsequent identification of loop invari-
ants. The loop invariants then lead to the final algorithms
through a technique based on program correctness. In this
paper we introduce a symbolic system, Cl1ck, that auto-
mates the generation of PMEs.

In order to generate PMEs, Cl1ck first identifies how the
operands in the operation may be partitioned. Instead of a
brute force approach of exponential complexity, Cl1ck uti-
lizes a tree-based algorithm that yields only the viable sets of
partitioning rules. Through a process of pattern matching,
each such set leads to a distinct PME. The key in the PME
generation is Cl1ck’s ability to identify known patterns. Ini-
tially, Cl1ck only recognizes elementary structures, but its
knowledge expands by automatically learning the patterns
associated with the operations it tackles. Thanks to this
augmenting internal knowledge, the system may generate
PMEs for increasingly complex operations.

A comment on the generality of the approach follows. In
order to illustrate Cl1ck and the algorithms it utilizes, we
discussed the Cholesky factorization and the Sylvester equa-
tion. Despite the fact that such operations differ in multiple
ways—number and properties of the operands, number of
valid sets of partitioning rules, number of PMEs—the steps
performed by Cl1ck, leading to the PMEs, are exactly the

same. In a future extension, we plan to allow Cl1ck to go
beyond matrix equations, adding support for higher dimen-
sional objects and the derivative operator.

5. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support received

from the Deutsche Forschungsgemeinschaft (German Re-
search Association) through grant GSC 111.

6. REFERENCES
[1] P. Bientinesi. Mechanical derivation and systematic

analysis of correct linear algebra algorithms. Technical
Report TR-06-46, Department of Computer Sciences,
The University of Texas at Austin, September 2006.

[2] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S.
Quintana-Ort́ı, and R. A. van de Geijn. The science of
deriving dense linear algebra algorithms. ACM
Transactions on Mathematical Software, 31(1):1–26,
Mar. 2005.

[3] P. Bientinesi, B. Gunter, and R. A. van de Geijn.
Families of algorithms related to the inversion of a
symmetric positive definite matrix. ACM Trans. Math.
Softw., 35(1):1–22, 2008.

[4] D. Gries and F. B. Schneider. A Logical Approach to
Discrete Math. Texts and Monographs in Computer
Science. Springer Verlag, 1992.

