Publications - Markus Hrywniak

Journal Article

  1. High-performance generation of the Hamiltonian and Overlap matrices in FLAPW methods
    Computer Physics Communications, Volume 211, pp. 61 - 72, February 2017.
    High Performance Computing for Advanced Modeling and Simulation of Materials.
    @article{Di_Napoli2017:318,
        author  = "Edoardo {Di Napoli} and Elmar Peise and Markus Hrywniak and Paolo Bientinesi",
        title   = "High-performance generation of the Hamiltonian and Overlap matrices in FLAPW methods",
        journal = "Computer Physics Communications",
        year    = 2017,
        volume  = 211,
        pages   = "61 - 72",
        month   = feb,
        note    = "High Performance Computing for Advanced Modeling and Simulation of Materials",
        url     = "http://arxiv.org/pdf/1602.06589v2"
    }
    One of the greatest effort of computational scientists is to translate the mathematical model describing a class of physical phenomena into large and complex codes. Many of these codes face the difficulty of implementing the mathematical operations in the model in terms of low level optimized kernels offering both performance and portability. Legacy codes suffers from the additional curse of rigid design choices based on outdated performance metrics (e.g. minimization of memory footprint). Using a representative code from the Materials Science community, we propose a methodology to restructure the most expensive operations in terms of an optimized combination of dense linear algebra kernels. The resulting algorithm guarantees an increased performance and an extended life span of this code enabling larger scale simulations.
    abstractwebPDFbibtexhide