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Resources

software.intel.com/sites/landingpage/IntrinsicsGuide/

Introduction to Intel Advanced Vector Extensions by Chris Lomont

A Guide to Vectorization with Intel C++ Compilers

Paul Springer (AICES) Vectorization 20.04.14 4 / 24
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Single Instruction Multiple Data

Intel® Advanced Vector Extensions 3 

 

  v1b DRAFT 23 May 2011 

Figure 2 illustrates the data types used in the SSE and Intel® AVX instructions. Roughly, for Intel® 
AVX, any multiple of 32-bit or 64-bit floating-point type that adds to 128 or 256 bits is allowed as 
well as multiples of any integer type that adds to 128 bits. 

 

Figure 2. Intel® AVX and SSE data types 

Instructions often come in scalar and vector versions, as illustrated in Figure 3. Vector versions 
operate by treating	  data	  in	  the	  registers	  in	  parallel	  “SIMD”	  mode; the scalar version only operates 
on one entry in each register. This distinction allows less data movement for some algorithms, 
providing better overall throughput. 

 

Figure 3. SIMD versus scalar operations 
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Theoretical1 speedup of 8x over scalar version

1For SP using AVX
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x64 Ultimate with Service Pack 1, and no other programs running during testing, but the relative 
performance should be similar on other machines. As expected, the SSE version performs almost 4 
times as well, because it is doing 4 pixels per pass, and the Intel® AVX version performs almost 8 
times as well as the CPU version. Because there is overhead from loops, memory access, less-than-
perfect instruction ordering, and other factors, 4- and 8-fold improvements should be about the 
best possible, so this is pretty good for a first try. 

 

Figure 5. Relative performance across sizes 

The second graph in Figure 6 shows that the pixels computed per millisecond are fairly constant 
over each size; again, the algorithms show almost quadrupling of performance from the CPU to 
SSE version and another doubling from the SSE to Intel® AVX version. 
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Single Instruction Multiple Data

Tabelle1

Seite 1

18.37 38.46 10.7 13.5

14.69 24.86 5.06 4.4

6.88 10.98 2.59 2.57
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HPC Problems

Frequency wall + Memory wall + Energy wall
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History

1997 Intel MMX

1998 AMD 3DNow!

1999 Streaming SIMD Extensions (SSE)

2001 Streaming SIMD Extensions 2 (SSE2)

2003 Streaming SIMD Extensions 3 (SSE3)

2006 Streaming SIMD Extensions 4 (SSE4)

2011 Advanced Vector Instruction (AVX)

2013 Advanced Vector Instruction 2 (AVX2)

(2015 AVX-512)
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Sandy Bridge Microarchitecture
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Figure: Intel Sandy Bridge Die.

32nm feature size

Over 2 billion transistors (vs Nvidia Kepler 7.1B)

Paul Springer (AICES) Vectorization 20.04.14 11 / 24



CPU Execution Units
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Figure: Intel Sandy Bridge Execution Units.

Sustain 16 SP or 8 DP
FP operations per cycles

1x Mul, 1x Add and 1x
shuffle per cycle
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Advanced Vector Extension

Introduced in 2011

Intel Sandy Bridge

AMD Bulldozer

Increased vector width to 256 bit

16 vector registers

Three operand SIMD instructions

New instructions

VBROADCASTSS

VPERM2F128

. . .
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Advanced Vector Extension

2 Intel® Advanced Vector Extensions 

 

v1b DRAFT 23 May 2011 

Note   The rest of this article assumes operation in 64-bit mode. 

SIMD instructions allow processing of multiple pieces of data in a single step, speeding up 
throughput for many tasks, from video encoding and decoding to image processing to data 
analysis to physics simulations. Intel® AVX instructions work on Institute of Electrical and 
Electronics Engineers (IEEE)-754 floating-point values in 32-bit length (called single precision) 
and in 64-bit length (called double precision). IEEE-754 is the standard defining reproducible, 
robust floating-point operation and is the standard for most mainstream numerical computations. 

The older, related SSE instructions also support various signed and unsigned integer sizes, 
including signed and unsigned byte (B, 8-bit), word (W, 16-bit), doubleword (DW, 32-bit), 
quadword (QW, 64-bit), and doublequadword (DQ, 128-bit) lengths. Not all instructions are 
available in all size combinations; for details, see the links provided in	  “For	  More	  Information.” See 
Figure 2 later in this article for a graphical representation of the data types. 

The hardware supporting Intel® AVX (and FMA) consists of the 16 256-bit YMM registers YMM0-
YMM15 and a 32-bit control/status register called MXCSR. The YMM registers are aliased over the 
older 128-bit XMM registers used for SSE, treating the XMM registers as the lower half of the 
corresponding YMM register, as shown in Figure 1. 

Bits 0–5 of MXCSR indicate SIMD floating-point	  exceptions	  with	  “sticky”	  bits—after being set, they 
remain set until cleared using LDMXCSR or FXRSTOR. Bits 7–12 mask individual exceptions when set, 
initially set by a power-up or reset. Bits 0–5 represent invalid operation, denormal, divide by zero, 
overflow, underflow, and precision, respectively. For details, see the	  links	  ”For	  More	  Information.” 

 

Figure 1. XMM registers overlay the YMM registers. 

c ©
C
h
ri
s
L
o
m
o
n
t

Paul Springer (AICES) Vectorization 20.04.14 15 / 24



Advanced Vector Extension
Intel® Advanced Vector Extensions 3 

 

  v1b DRAFT 23 May 2011 

Figure 2 illustrates the data types used in the SSE and Intel® AVX instructions. Roughly, for Intel® 
AVX, any multiple of 32-bit or 64-bit floating-point type that adds to 128 or 256 bits is allowed as 
well as multiples of any integer type that adds to 128 bits. 

 

Figure 2. Intel® AVX and SSE data types 

Instructions often come in scalar and vector versions, as illustrated in Figure 3. Vector versions 
operate by treating	  data	  in	  the	  registers	  in	  parallel	  “SIMD”	  mode; the scalar version only operates 
on one entry in each register. This distinction allows less data movement for some algorithms, 
providing better overall throughput. 

 

Figure 3. SIMD versus scalar operations 
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Advanced Vector Extension

v mul p s

op code

AVX prefix p = packed/ 
s = scalar

s = single/ 
d = double
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Auto-Vectorization with ICC

Auto-vec is activated by default

Optional compiler flags:

-vec-report3
-xAVX

Implicit vectorization

Let the compiler do the work for you.
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C/C++ Intrinsics

Exercise
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Limitations

Only vectorizes innermost loop

Pay attention to the following guidelines:

Avoid divergence based on the loop counter

Avoid branching

Use single-entry, single-exit loops

Avoid non-contiguous and indirect memory accesses

Avoid inter-loop dependencies

No function calls allowed2

Align memory to 32 byte boundaries

Often Structure of Arrays is preferable over Array of Structures

2except for two exceptions
Paul Springer (AICES) Vectorization 20.04.14 21 / 24



SoA vs AoS

SoA AoS

Vectorization friendly if contin-
uous memory accesses

Better cache behaviour than
SoA if random memory accesses

Better cache behaviour if only
single elements of the structure
are used

Programmer friendly
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Alignment

attribute ((aligned(32)))

e.g.: float x[128] attribute ((aligned(32)))

void* mm malloc (size t size, size t align )

void mm free (void *p)

#pragma vector aligned
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Pragmas

Compiler Hint Description

#pragma ivdep Ignore potential (unproven) data dep.

#pragma vector always Override efficiency heuristic

#pragma vector nontemporal Hint to use streaming stores

#pragma vector [un]aligned assert [un]aligned property

#pragma novector disable vectorization for this loop

#pragma loop count (<int>) Hint for likely trip count
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