
Vectorization

Paul Springer

Aachen Institute for Advanced Study in
Computational Engineering Science

Aachen, 20.04.14

Paul Springer (AICES) Vectorization 20.04.14 1 / 24

Outline

1 Resources

2 Motivation

3 Advanced Vector Extension

4 Auto-Vectorization with ICC
Alignment
Pragmas

Paul Springer (AICES) Vectorization 20.04.14 2 / 24

Outline

1 Resources

2 Motivation

3 Advanced Vector Extension

4 Auto-Vectorization with ICC
Alignment
Pragmas

Paul Springer (AICES) Vectorization 20.04.14 3 / 24

Resources

software.intel.com/sites/landingpage/IntrinsicsGuide/

Introduction to Intel Advanced Vector Extensions by Chris Lomont

A Guide to Vectorization with Intel C++ Compilers

Paul Springer (AICES) Vectorization 20.04.14 4 / 24

software.intel.com/sites/landingpage/IntrinsicsGuide/

Outline

1 Resources

2 Motivation

3 Advanced Vector Extension

4 Auto-Vectorization with ICC
Alignment
Pragmas

Paul Springer (AICES) Vectorization 20.04.14 5 / 24

Single Instruction Multiple Data

Intel® Advanced Vector Extensions 3

 v1b DRAFT 23 May 2011

Figure 2 illustrates the data types used in the SSE and Intel® AVX instructions. Roughly, for Intel®
AVX, any multiple of 32-bit or 64-bit floating-point type that adds to 128 or 256 bits is allowed as
well as multiples of any integer type that adds to 128 bits.

Figure 2. Intel® AVX and SSE data types

Instructions often come in scalar and vector versions, as illustrated in Figure 3. Vector versions
operate by treating	 data	 in	 the	 registers	 in	 parallel	 “SIMD”	 mode; the scalar version only operates
on one entry in each register. This distinction allows less data movement for some algorithms,
providing better overall throughput.

Figure 3. SIMD versus scalar operations

c ©
C
h
ri
s
L
o
m
o
n
t

Theoretical1 speedup of 8x over scalar version

1For SP using AVX
Paul Springer (AICES) Vectorization 20.04.14 6 / 24

Single Instruction Multiple Data

Intel® Advanced Vector Extensions 13

 v1b DRAFT 23 May 2011

x64 Ultimate with Service Pack 1, and no other programs running during testing, but the relative
performance should be similar on other machines. As expected, the SSE version performs almost 4
times as well, because it is doing 4 pixels per pass, and the Intel® AVX version performs almost 8
times as well as the CPU version. Because there is overhead from loops, memory access, less-than-
perfect instruction ordering, and other factors, 4- and 8-fold improvements should be about the
best possible, so this is pretty good for a first try.

Figure 5. Relative performance across sizes

The second graph in Figure 6 shows that the pixels computed per millisecond are fairly constant
over each size; again, the algorithms show almost quadrupling of performance from the CPU to
SSE version and another doubling from the SSE to Intel® AVX version.

0.22 0.22 0.22 0.22 0.22 0.22
1.00 1.00 1.00 1.00 1.00 1.00

3.50 3.50 3.52 3.57 3.61 3.66

7.00
6.59

7.05 7.22 7.41 7.58

128 256 512 1024 2048 4096

Performance relative to float version
(higher is better)

Complex Float SSE Intel® AVX

c ©
C
h
ri
s
L
o
m
o
n
t

Paul Springer (AICES) Vectorization 20.04.14 7 / 24

Single Instruction Multiple Data

Tabelle1

Seite 1

18.37 38.46 10.7 13.5

14.69 24.86 5.06 4.4

6.88 10.98 2.59 2.57

Cell List (half) Cell List (full) Linked Cell (half)Linked Cell (full)

1.250510551 1.547063556 2.114624506 3.068181818

Intrinsics 2.135174419 3.50273224 4.131274131 5.252918288

Auto-vec

Cell List (half)
Cell List (full)

Linked Cell (half)
Linked Cell (full)

0

1

2

3

4

5

6

Auto-vec

Intrinsics

S
p
e
e
d
u
p

Paul Springer (AICES) Vectorization 20.04.14 8 / 24

HPC Problems

Frequency wall + Memory wall + Energy wall

=

c ©
1
2
3
rf
.c
o
m

Paul Springer (AICES) Vectorization 20.04.14 9 / 24

History

1997 Intel MMX

1998 AMD 3DNow!

1999 Streaming SIMD Extensions (SSE)

2001 Streaming SIMD Extensions 2 (SSE2)

2003 Streaming SIMD Extensions 3 (SSE3)

2006 Streaming SIMD Extensions 4 (SSE4)

2011 Advanced Vector Instruction (AVX)

2013 Advanced Vector Instruction 2 (AVX2)

(2015 AVX-512)

Paul Springer (AICES) Vectorization 20.04.14 10 / 24

Sandy Bridge Microarchitecture

S
o
u
rc
e:

b
it
-t
ec
h
.n
et

Figure: Intel Sandy Bridge Die.

32nm feature size

Over 2 billion transistors (vs Nvidia Kepler 7.1B)

Paul Springer (AICES) Vectorization 20.04.14 11 / 24

CPU Execution Units

S
o
u
rc
e:

w
w
w
.r
ea
lw
or
ld
te
ch

.c
o
m

Figure: Intel Sandy Bridge Execution Units.

Sustain 16 SP or 8 DP
FP operations per cycles

1x Mul, 1x Add and 1x
shuffle per cycle

Paul Springer (AICES) Vectorization 20.04.14 12 / 24

Outline

1 Resources

2 Motivation

3 Advanced Vector Extension

4 Auto-Vectorization with ICC
Alignment
Pragmas

Paul Springer (AICES) Vectorization 20.04.14 13 / 24

Advanced Vector Extension

Introduced in 2011

Intel Sandy Bridge

AMD Bulldozer

Increased vector width to 256 bit

16 vector registers

Three operand SIMD instructions

New instructions

VBROADCASTSS

VPERM2F128

. . .

Paul Springer (AICES) Vectorization 20.04.14 14 / 24

Advanced Vector Extension

2 Intel® Advanced Vector Extensions

v1b DRAFT 23 May 2011

Note The rest of this article assumes operation in 64-bit mode.

SIMD instructions allow processing of multiple pieces of data in a single step, speeding up
throughput for many tasks, from video encoding and decoding to image processing to data
analysis to physics simulations. Intel® AVX instructions work on Institute of Electrical and
Electronics Engineers (IEEE)-754 floating-point values in 32-bit length (called single precision)
and in 64-bit length (called double precision). IEEE-754 is the standard defining reproducible,
robust floating-point operation and is the standard for most mainstream numerical computations.

The older, related SSE instructions also support various signed and unsigned integer sizes,
including signed and unsigned byte (B, 8-bit), word (W, 16-bit), doubleword (DW, 32-bit),
quadword (QW, 64-bit), and doublequadword (DQ, 128-bit) lengths. Not all instructions are
available in all size combinations; for details, see the links provided in	 “For	 More	 Information.” See
Figure 2 later in this article for a graphical representation of the data types.

The hardware supporting Intel® AVX (and FMA) consists of the 16 256-bit YMM registers YMM0-
YMM15 and a 32-bit control/status register called MXCSR. The YMM registers are aliased over the
older 128-bit XMM registers used for SSE, treating the XMM registers as the lower half of the
corresponding YMM register, as shown in Figure 1.

Bits 0–5 of MXCSR indicate SIMD floating-point	 exceptions	 with	 “sticky”	 bits—after being set, they
remain set until cleared using LDMXCSR or FXRSTOR. Bits 7–12 mask individual exceptions when set,
initially set by a power-up or reset. Bits 0–5 represent invalid operation, denormal, divide by zero,
overflow, underflow, and precision, respectively. For details, see the	 links	 ”For	 More	 Information.”

Figure 1. XMM registers overlay the YMM registers.

c ©
C
h
ri
s
L
o
m
o
n
t

Paul Springer (AICES) Vectorization 20.04.14 15 / 24

Advanced Vector Extension
Intel® Advanced Vector Extensions 3

 v1b DRAFT 23 May 2011

Figure 2 illustrates the data types used in the SSE and Intel® AVX instructions. Roughly, for Intel®
AVX, any multiple of 32-bit or 64-bit floating-point type that adds to 128 or 256 bits is allowed as
well as multiples of any integer type that adds to 128 bits.

Figure 2. Intel® AVX and SSE data types

Instructions often come in scalar and vector versions, as illustrated in Figure 3. Vector versions
operate by treating	 data	 in	 the	 registers	 in	 parallel	 “SIMD”	 mode; the scalar version only operates
on one entry in each register. This distinction allows less data movement for some algorithms,
providing better overall throughput.

Figure 3. SIMD versus scalar operations

c ©
C
h
ri
s
L
o
m
o
n
t

Paul Springer (AICES) Vectorization 20.04.14 16 / 24

Advanced Vector Extension

v mul p s

op code

AVX prefix p = packed/
s = scalar

s = single/
d = double

Paul Springer (AICES) Vectorization 20.04.14 17 / 24

Outline

1 Resources

2 Motivation

3 Advanced Vector Extension

4 Auto-Vectorization with ICC
Alignment
Pragmas

Paul Springer (AICES) Vectorization 20.04.14 18 / 24

Auto-Vectorization with ICC

Auto-vec is activated by default

Optional compiler flags:

-vec-report3
-xAVX

Implicit vectorization

Let the compiler do the work for you.

Paul Springer (AICES) Vectorization 20.04.14 19 / 24

C/C++ Intrinsics

Exercise

Paul Springer (AICES) Vectorization 20.04.14 20 / 24

Limitations

Only vectorizes innermost loop

Pay attention to the following guidelines:

Avoid divergence based on the loop counter

Avoid branching

Use single-entry, single-exit loops

Avoid non-contiguous and indirect memory accesses

Avoid inter-loop dependencies

No function calls allowed2

Align memory to 32 byte boundaries

Often Structure of Arrays is preferable over Array of Structures

2except for two exceptions
Paul Springer (AICES) Vectorization 20.04.14 21 / 24

SoA vs AoS

SoA AoS

Vectorization friendly if contin-
uous memory accesses

Better cache behaviour than
SoA if random memory accesses

Better cache behaviour if only
single elements of the structure
are used

Programmer friendly

Paul Springer (AICES) Vectorization 20.04.14 22 / 24

Alignment

attribute ((aligned(32)))

e.g.: float x[128] attribute ((aligned(32)))

void* mm malloc (size t size, size t align)

void mm free (void *p)

#pragma vector aligned

Paul Springer (AICES) Vectorization 20.04.14 23 / 24

Pragmas

Compiler Hint Description

#pragma ivdep Ignore potential (unproven) data dep.

#pragma vector always Override efficiency heuristic

#pragma vector nontemporal Hint to use streaming stores

#pragma vector [un]aligned assert [un]aligned property

#pragma novector disable vectorization for this loop

#pragma loop count (<int>) Hint for likely trip count

Paul Springer (AICES) Vectorization 20.04.14 24 / 24

	Resources
	Motivation
	Advanced Vector Extension
	Auto-Vectorization with ICC
	Alignment
	Pragmas

