A Compiler for Linear Algebra Operations

Henrik Barthels

Introduction

- Translating the mathematical description of a linear algebra problem to efficient code is a difficult task. Examples of such problems are:

 \[
 b := (X'X)^{-1}X'y \\
 x_0 := ABc \\
 x := (A^{-T}B'B^{-1}A^{-1} + R)^{-1}A^{-T}B'B^{-1}A^{-1}y
 \]

- Languages such as Matlab and Julia are easy to use, but performance is usually suboptimal.

- We are developing a compiler that offers the ease-of-use, and thus, productivity of Matlab paired with performance that comes close to what a human expert achieves.

Encoded Linear Algebra Knowledge

Knowledge about linear algebra is used to simplify and rewrite expressions, as well as to infer properties. Matrix properties are crucial to select the most suitable kernels, as well as for simplifications.

Inference of Properties

- \(A \rightarrow A^T \)
- \(A^T \rightarrow A \) if Symmetric \(A \)
- \(A \rightarrow AB \)
- \((AB)^T \rightarrow B^T A^T \) if Symmetric \(A \)
- \(B \rightarrow AB \)
- \(A^T \rightarrow Q^T \) if Orthogonal \(Q \)
- \(SPD(S) \rightarrow SPD(S^{-1}) \)

Simplifications

- \(\alpha A + \beta A \rightarrow (\alpha + \beta)A \)

Derivation Graph

Algorithms are derived by repeatedly applying different derivation steps.

Each of these steps yields one or more results. We use a graph to represent all algorithms. The root of the graph is the input expression, and each path in the graph corresponds to one algorithm. Below, a part of such a graph is shown. The full graph has 83 nodes.

Input Grammar

Unlike Matlab, the input language allows to annotate operands with properties.

Instruction Set

As the instruction set, we use optimized kernels as offered by linear algebra libraries.

BLAS [3]

- \(y \leftarrow ax + \beta y \)
- Matrix factorizations.
- \(y \leftarrow ax + \beta c \)
- Eigensolvers.
- \(y \leftarrow a^{-T}B \)
- Solvers for linear systems with specific properties.

LAPACK [1]

- \(y \leftarrow ax + \beta y \)
- Matrix factorizations.
- \(y \leftarrow ax + \beta c \)
- Eigensolvers.
- \(y \leftarrow a^{-T}B \)
- Solvers for linear systems with specific properties.

Optimizations

- FLOPS can be saved by reusing subexpressions that appear more than once, for example \(AB \) in \(AB + ABC \).
- Operators such as transposition and inversion make the detection of common subexpression more complicated:

\[
\begin{align*}
 AB - C'B' \rightarrow C_1 C_2' \\
 C_1 & = AB^{-T} = (B^{-1}A')^T = C_2'
\end{align*}
\]

- We developed algorithms to detect such common subexpressions.

Generalized Matrix Chain Problem

- The cost of a product \(M_2 \cdots M_n \) highly depends on the parentheses.
- We developed a generalized version of the \(O(n^3) \) matrix chain algorithm [2].
- It finds the optimal parentheses for matrix chains containing transposition and inversion, for example \(X := AB^{-1}C^{-1}D \).
- This algorithm also takes properties into account.

Results

- Example: \(z := (X'(X'M^{-1}X)'X'M^{-1}y) = (X'M^{-1}X)'X'M^{-1}y \).
 - Naive implementation: \(z = \text{inv}(X'M^{-1}X)'X'M^{-1}y \).
 - Recommended implementation: \(z = (X'M^{-1}X)'X'M^{-1}y \).

References

Henrik Barthels
Aachen Institute for Advanced Study in Computational Engineering Science (AICES)
RWTH Aachen, Germany
http://hpac.rwth-aachen.de
barthels@aices.rwth-aachen.de