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Automatic Generation of Algorithms

Automatic Differentiation

. Our methodology for automatically generating algorithms is based on formal methods. | | Automatic Differentiation is a method to numerically evaluate the derivative of a func-
. Given a formal description of a target operation, we perform a series of symbolic steps | | tion specified by a computer program. Through a process called Source Code Trans-
. to obtain a set of predicates called loop-invariants. Each loop-invariant then leadstoa | | formation, the source code implementing a function is automatically augmented to
. corresponding algorithm. The process is completely mechanical and can be automat- | | compute both the function and its derivative with respect to one or more variables.
. ically performed by computer algebra systems. This technigue can be applied in perturbation analysis, optimization, ... :
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. Each derivative kernel has its own pair of
. Precondition and Postcondition predicates.
. In the case of A’X + AX’ = o’B: '

Precondition : {Input(a’, A, A", B, X) A |
LowTri(A, A') A
Output(X’)} '
Postcondition : {A’X + AX' = o’B}
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- The differentiation with respect to mul-
e tiple variables (array v), results in
. three dimensional arrays.
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. The operands in the postcondi- l

~ tion are replaced by their parti-
~ tioned counterparts. %

e | AL O )(XT> (ATLl 0 )(X'> /(BT>
)+ )= (55 B P corvion [
| (A,BL A,BR XB ABLlABR X,B BB E PME derivation i

. Several steps of algebraic manipulation :

~ performed until the PME (Partitioned Ma-
X} — A;lj (o'Br — A,TLXT) ) . trix Expression) is obtained. =

The PME is at the core of the methodology. It is a re-
. cursive definition of the operation representing how
. the different parts of the output are computed in terms
. of parts of the input. It also shows which operations WWVWW‘” —
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. dencies between said operations.
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. From the PME a family of loop-invariants are auto- : where A7, is0x 0 x k, Xris0 x n, ...
. matically derived. A loop invariant is a predicate that _ _
. Is true at the beginning and the end of each iteration While n(X}) < n(X) do A VG Y PRGNS k
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