Mechanical Generation of Algorithms for Automatic Differentiation

Diego Fabregat-Traver

Advisor: Prof. Paolo Bientinesi

 $f(\alpha, \mathbf{A}, \mathbf{B}, \mathbf{X}) = \mathbf{0} \equiv \mathbf{A}\mathbf{X} = \alpha \mathbf{B}$

Automatic Generation of Algorithms

Our methodology for automatically generating algorithms is based on formal methods. Given a formal description of a target operation, we perform a series of symbolic steps to obtain a set of predicates called loop-invariants. Each loop-invariant then leads to a corresponding algorithm. The process is completely mechanical and can be automatically performed by computer algebra systems.

Automatic Differentiation

Automatic Differentiation is a method to numerically evaluate the derivative of a function specified by a computer program. Through a process called Source Code Transformation, the source code implementing a function is automatically augmented to compute both the function and its derivative with respect to one or more variables. This technique can be applied in perturbation analysis, optimization, ...

Input

f(

The formal description of the target operation is given by two predicates, the **Precondition** and the **Postcondition**. In this case:

$$(\alpha, A, B, X) = \mathbf{0} \equiv \begin{cases} f_{\operatorname{Pre}} : \{ \operatorname{Input}(\alpha, A, B) \land \\ LowTri(A) & \land \\ Output(X) \end{cases}$$

 $\frac{df}{dv} = ?$ Kernels According to pendency of respect to tational ker

According to the functional dependency of the operands with respect to *v*, **multiple computational kernels** are required.

The **PME** is at the core of the methodology. It is a **recursive definition of the operation** representing how the different parts of the output are computed in terms of parts of the input. It also shows which **operations** are **to be performed** in each quadrant **and** the **dependencies** between said operations.

 $\left(\frac{X_T' = A_{TL}^{-1}(\alpha' B_T - A_{TL}' X_T)}{X_B' = A_{BB}^{-1}(\alpha' B_B - A_{BL}' X_T - A_{BB}' X_B - A_{BL} X_T')}\right)$

 $\left(\frac{X'_T = A_{TL}^{-1}(\alpha' B_T - A'_{TL} X_T)}{X'_P = \alpha' B_R - A'_{PI} X_T - A'_{PP} X_R - A_{PI} X'_T}\right) \quad \cdots \quad \left(\frac{X'_T = A_{TL}^{-1}(\alpha' B_T - A'_{TL} X_T)}{X'_P = \alpha' B_R - A'_{PP} X_R - A_{PI} X'_T}\right) \quad \cdots \quad \left(\frac{X'_T = A_{TL}^{-1}(\alpha' B_T - A'_{TL} X_T)}{X'_P = B_R}\right)$

and pattern matching are automatically performed until the PME (Partitioned Matrix Expression) is obtained.

Loop-Invariants

From the PME a family of loop-invariants are automatically derived. A loop invariant is a predicate that is true at the beginning and the end of each iteration of a loop. A loop-invariant constitutes the skeleton of a proof of correctness around which the final algorithm is automatically built.

Partition $A' \rightarrow \left(\begin{array}{c|c} A'_{TL} & 0 \\ \hline A'_{BI} & A'_{BB} \end{array} \right), X \rightarrow \left(\begin{array}{c} X_T \\ \hline X_B \end{array} \right), \dots$ where $A'_{\tau l}$ is $0 \times 0 \times k$, X_T is $0 \times n$, ... Loop-Invariants to Algorithms While $n(X'_{T}) < n(X')$ do There is a one to one correspon-**Repartition** $\begin{pmatrix} A'_{TL} & 0 \\ \hline A'_{BL} & A'_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A'_{00} & 0 & 0 \\ \hline A'_{10} & A'_{11} & 0 \\ \hline A'_{20} & A'_{21} & A'_{20} \end{pmatrix}, \begin{pmatrix} X_T \\ \hline X_B \end{pmatrix} \rightarrow \begin{pmatrix} X_0 \\ \hline X_1 \\ \hline X_2 \end{pmatrix}, \dots$ dence between loop-invariants and </ algorithms. where A'_{11} is $1 \times 1 \times k$, X_1 is $1 \times n$, ...

Funding from DFG through grant GSC 111 is gratefully acknowledged

the operation $A'X + AX' = \alpha'B$. Every step in the methodology for building the algorithm is fully automated.

(GER)

Deutsche Forschungsgemeinschaft DFG

 $X'_1 := \alpha' B_1$

 $X_1' := X_1' - A_{10}' X_0$ (gemm)

 $X'_1 := X'_1 - A'_{11}X_1$ (GER)

Graduate School AICES · RWTH Aachen University · Templergraben 55 · 52056 Aachen, Germany · Tel.: +49(0)241/80-28498 · www.aices.rwth-aachen.de