High-throughput Algorithms for Genome-Wide Association Studies

Diego Fabregat-Traver and Prof. Paolo Bientinesi In collaboration with Dr. Yurii Aulchenko

AICES, RWTH Aachen fabregat@aices.rwth-aachen.de

BGRS/SB, June 25th – 29th, 2012 Novosibirsk, Russia

Aim at...

- Identify association between genetic markers and phenotypes of interest
- Significant association highlights genomic regions involved in the control of a trait

Aim at...

- Identify association between genetic markers and phenotypes of interest
- Significant association highlights genomic regions involved in the control of a trait

How?

Variance Components based on linear mixed-models

Linear algebra

$$\begin{cases} b = (X^{T}M^{-1}X)^{-1}X^{T}M^{-1}y \\ M = \sigma^{2}(h^{2}\Phi + (1 - h^{2})I) \end{cases}$$

- $X \in \mathbb{R}^{n \times p}$, single-nucleotide polymorphism
- $y \in \mathbb{R}^n$, phenotype
- $h^2, \sigma^2 \in R$, heritability and residual variance
- $\Phi \in \mathbb{R}^{n \times n}$, kinship matrix
- $b \in \mathbb{R}^p$, genetic effect

- $n \in [1,000,...,10,000]$
- $p \in [1, ..., 20]$

Linear algebra

$$\left\{ \begin{array}{ll} b_i &= (X_i{}^T M \ ^{-1}X_i)^{-1} X_i{}^T M \ ^{-1}y & \quad \text{with } 1 \leq i \leq m \\ M &= \sigma^2 (h^2 \Phi + (1-h^2)I) \end{array} \right.$$

- $X \in \mathbb{R}^{n \times p}$, single-nucleotide polymorphism
- $y \in \mathbb{R}^n$, phenotype
- $h^2, \sigma^2 \in R$, heritability and residual variance
- ullet $\Phi \in R^{n \times n}$, kinship matrix
- ullet $b \in \mathbb{R}^p$, genetic effect

- $n \in [1,000,...,10,000]$
- $p \in [1, ..., 20]$
- $m \in [10^6, ..., 10^7]$

Scenario 1: Single-trait analysis

Linear algebra

$$\begin{cases} b_{ij} = ({X_i}^T {M_j}^{-1} X_i)^{-1} {X_i}^T {M_j}^{-1} y_j & \text{with } 1 \leq i \leq m \\ M_j = \sigma_j^2 (h_j^2 \Phi + (1 - h_j^2) I) & \text{and } 1 \leq j \leq t. \end{cases}$$

- $X \in \mathbb{R}^{n \times p}$, single-nucleotide polymorphism
- $y \in \mathbb{R}^n$, phenotype
- $h^2, \sigma^2 \in R$, heritability and residual variance
- $\Phi \in R^{n \times n}, \quad \text{kinship matrix}$
- $ullet b \in R^p, \qquad ext{genetic effect}$

- $n \in [1,000,...,10,000]$
- $p \in [1, ..., 20]$
- $m \in [10^6, ..., 10^7]$
- t is 1 or $\approx 10^5$

Scenario 2: Multiple-trait analysis

The challenge

Scenario 1

• Sample size: 10,000

covariates: 2

• # SNPs: 36,000,000

phenotypes: 1

The challenge

Scenario 1

Sample size: 10,000

covariates: 2

• # SNPs: 36,000,000

phenotypes: 1

• Data set: ≈ 3 TB

Tool	Time	
EMMAX	40 days	
GWFGLS	20 days	
FaST-LMM	53 hours	

The challenge

Scenario 1

Sample size: 10,000

covariates: 2

• # SNPs: 36,000,000

phenotypes: 1

■ Data set: ≈ 3 TB

Tool	Time
EMMAX	40 days
GWFGLS	20 days
FaST-LMM	53 hours

Scenario 2

Sample size: 1,000

covariates: 2

• # SNPs: 1,000,000

• # phenotypes: 100,000

The challenge

Scenario 1

Sample size: 10,000

covariates: 2

• # SNPs: 36,000,000

phenotypes: 1

■ Data set: ≈ 3 TB

Tool	Time	
EMMAX	AX 40 days	
GWFGLS	20 days	
FaST-LMM	53 hours	

Scenario 2

Sample size: 1,000

covariates: 2

• # SNPs: 1,000,000

• # phenotypes: 100,000

■ Data set: ≈ 3 TB

Tool	Time
EMMAX	pprox 3 years
FaST-LMM	>1 year
GWFGLS	pprox 9 months

The challenge

Scenario 1

Sample size: 10,000

covariates: 2

• # SNPs: 36,000,000

phenotypes: 1

• Data set: ≈ 3 TB

Tool	Time
EMMAX	40 days
GWFGLS	20 days
FaST-LMM	53 hours
CLAK-CHOL	?

Scenario 2

Sample size: 1,000

covariates: 2

• # SNPs: 1,000,000

• # phenotypes: 100,000

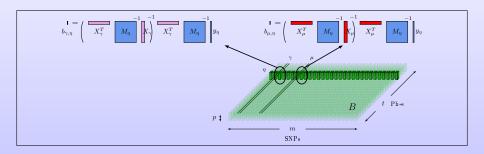
■ Data set: ≈ 3 TB

Tool	Time
EMMAX	pprox 3 years
FaST-LMM	>1 year
GWFGLS	pprox 9 months
CLAK-EIG	?

- Introduction
- 2 Single phenotype: CLAK-CHOL
- Out-of-core
- Multiple phenotype: CLAK-EIG
- Experimental results
- 6 Conclusions and Future work

Single phenotype analysis (t = 1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$



Single phenotype analysis (t = 1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$

• Typically, based on $eig(\Phi)$: $O(n^3)$

Single phenotype analysis (t=1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$

- Typically, based on eig(Φ): $O(n^3)$
- CLAK-CHOL based on chol(M): $O(n^3)$

Single phenotype analysis (t = 1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$

- Typically, based on eig(Φ): $O(n^3)$
- CLAK-CHOL based on chol(M): $O(n^3)$

$$O(n^3) = O(n^3)$$
 ?

Single phenotype analysis (t = 1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$

- Typically, based on eig(Φ): $O(n^3)$
- CLAK-CHOL based on chol(M): $O(n^3)$

$$O(n^3) = O(n^3)$$
 ?

	Chol	Eig
# operations	$\frac{1}{3}n^{3}$	$\frac{10}{3}n^3$
Efficient?	+	_
Scalable?	+	_

Single phenotype analysis (t = 1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$

- Typically, based on eig(Φ): $O(n^3)$
- CLAK-CHOL based on chol(M): $O(n^3)$

$$O(n^3) = O(n^3)$$
 ?

	Chol	Eig
# operations	$\frac{1}{3}n^{3}$	$\frac{10}{3}n^3$
Efficient?	+	_
Scalable?	+	_

Asymptotical cost is only part of the story

Single phenotype analysis (t = 1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$

Traditional

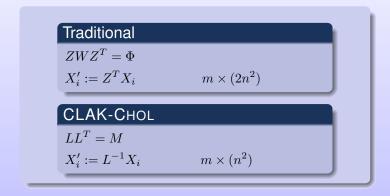
$$ZWZ^T = \Phi$$

$$X_i' := Z^T X_i$$

$$m \times (2n^2)$$

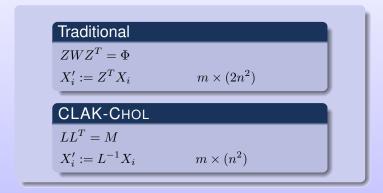
Single phenotype analysis (t = 1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$



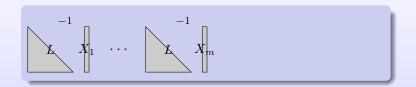
Single phenotype analysis (t = 1)

$$\begin{cases} b_i = (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \\ M = \sigma^2 (h^2 \Phi + (1 - h^2) I) \end{cases}$$

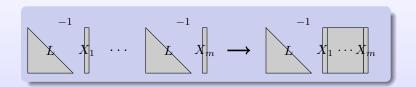


The constant makes a big difference

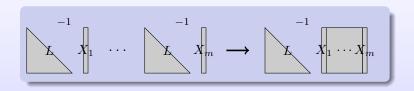
Single phenotype analysis (t=1)



Single phenotype analysis (t=1)

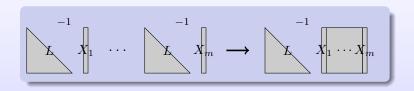


Single phenotype analysis (t = 1)



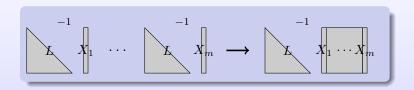
Many TRSVs vs one single large TRSM

Single phenotype analysis (t = 1)



- Many TRSVs vs one single large TRSM
- Same amount of computation

Single phenotype analysis (t = 1)



- Many TRSVs vs one single large TRSM
- Same amount of computation
- Different efficiency

Operation	Efficiency	Scalability
One TRSM	90%	+
m TRSVS	15%	-

Yes, asymptotical cost is important, but...

- Careful with the **constants** $(\frac{1}{3}n^3 \text{ vs } \frac{10}{3}n^3, 2n^2 \text{ vs } n^2)$
- The efficiency of the operations plays an important role
- The scalability of the operations is also important

- Introduction
- 2 Single phenotype: CLAK-CHOL
- 3 Out-of-core
- Multiple phenotype: CLAK-EIG
- Experimental results
- 6 Conclusions and Future work

Out-of-core algorithms

Problem

- Data does not fit in RAM (terabytes of data)
- ullet Loading data from disk is slow o processor stalls

Out-of-core algorithms

Problem

- Data does not fit in RAM (terabytes of data)
- Loading data from disk is slow → processor stalls

Approach

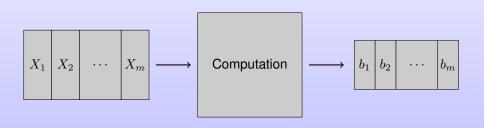
- Overlapping vs Non-overlapping
- Goal: hide the overhead due to data transfers

Out-of-core algorithms

The problem as a stream of data

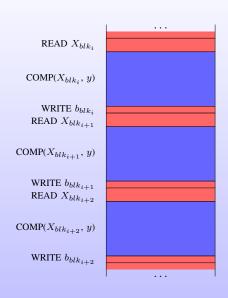
We regard the problem as:

- an input stream of X's (SNPs)
- an output stream of b's (the computed effects)



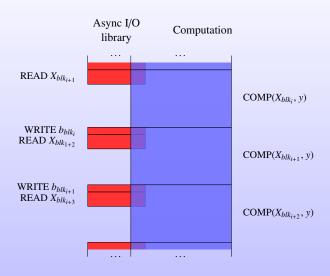
Approaches to Out-of-core

Non-overlapping



Approaches to Out-of-core

Overlapping

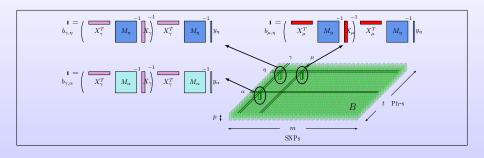


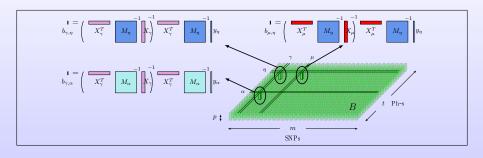
Non-overlapping: 10% - 15% overhead

- Non-overlapping: 10% 15% overhead
- Try to overlap as much as possible to minimize overhead

- Non-overlapping: 10% 15% overhead
- Try to overlap as much as possible to minimize overhead
- Perfect overlapping:
 - Data on disk but...
 - Efficiency as if data in RAM!

- Introduction
- Single phenotype: CLAK-Сног
- Out-of-core
- 4 Multiple phenotype: CLAK-EIG
- Experimental results
- Conclusions and Future work





- Traditionally: run single-phenotype routines for each phenotype
- CLAK-EIG considers the whole 2D sequence in its entirety

Multiple phenotype analysis ($t \approx 10^5$)

First step:

- 1 eigendecomposition vs t Cholesky factorizations
- SNPs premultiplied (Z^TX_i) only once and reused

Multiple phenotype analysis ($t \approx 10^5$)

First step:

- 1 eigendecomposition vs t Cholesky factorizations
- SNPs premultiplied (Z^TX_i) only once and reused

Second step:

- Cost of traditional algorithms: $t(mn^2)$
- CLAK-EIG linear with all dimensions: t(mn)

Multiple phenotype analysis ($t \approx 10^5$)

First step:

- 1 eigendecomposition vs t Cholesky factorizations
- SNPs premultiplied (Z^TX_i) only once and reused

Second step:

- Cost of traditional algorithms: $t(mn^2)$
- ullet CLAK-EIG linear with all dimensions: t(mn)
- There is much more: fine tuning, parallelism, ...

19 / 27

Multiple phenotype analysis ($t \approx 10^5$)

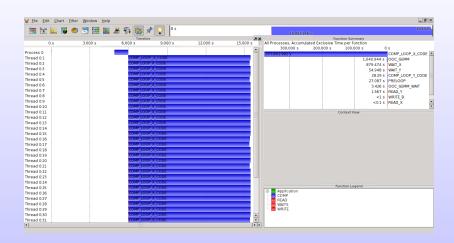
First step:

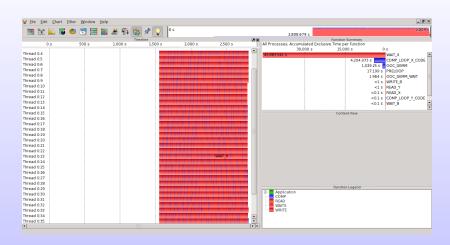
- 1 eigendecomposition vs t Cholesky factorizations
- ullet SNPs premultiplied (Z^TX_i) only once and reused

Second step:

- Cost of traditional algorithms: $t(mn^2)$
- CLAK-EIG linear with all dimensions: t(mn)
- There is much more: fine tuning, parallelism, ...

Out-of-core: a careful tuning of the overlapping is VERY important.



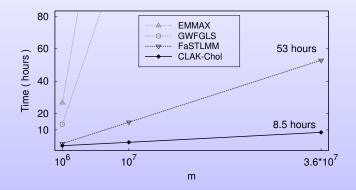


- Introduction
- Single phenotype: CLAK-Сног
- Out-of-core
- Multiple phenotype: CLAK-EIG
- Experimental results
- 6 Conclusions and Future work

Scenario 1: Single phenotype

• Sample size: 10,000

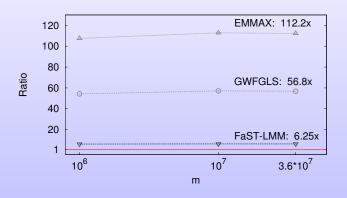
• # covariates: 2



Scenario 1: Single phenotype

• Sample size: 10,000

covariates: 2

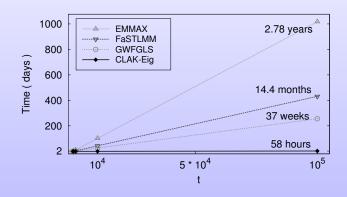


Scenario 2: Multiple phenotype

• Sample size: 1,000

• # SNPs: 1,000,000

• # covariates: 2

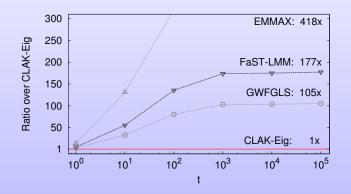


Scenario 2: Multiple phenotype

• Sample size: 1,000

• # SNPs: 1,000,000

• # covariates: 2



- Introduction
- 2 Single phenotype: CLAK-CHOL
- Out-of-core
- Multiple phenotype: CLAK-EIG
- Experimental results
- 6 Conclusions and Future work

Conclusions and Future work (I)

Two different scenarios: Two different algorithms

Single phenotype: CLAK-CHOL Multiple phenotype: CLAK-EIG

Conclusions and Future work (I)

Two different scenarios: Two different algorithms

Single phenotype: CLAK-CHOL Multiple phenotype: CLAK-EIG

Guidelines for High Performance

- Asymptotical cost is not enough
- Number of arithmetic operations
- Efficiency and scalability of the operations
- ullet Perfect overlapping of I/O with computation o no stalls

Conclusions and Future work (I)

Two different scenarios: Two different algorithms

Single phenotype: CLAK-CHOL Multiple phenotype: CLAK-EIG

Guidelines for High Performance

- Asymptotical cost is not enough
- Number of arithmetic operations
- Efficiency and scalability of the operations
- ullet Perfect overlapping of I/O with computation o no stalls
- Very important: look at the problem as a whole

Conclusions and Future work (II)

Results

- Single phenotype: CLAK-CHOL Speedup > 6x
- Multiple phenotype: CLAK-EIG Speedup > 100x
 - Years/Months to hours!!!

Conclusions and Future work (II)

Results

- Single phenotype: CLAK-CHOL Speedup > 6x
- Multiple phenotype: CLAK-EIG Speedup > 100x
 - Years/Months to hours!!!

Future Work

- Reduction of complexity by exploiting sparsity
- More computational power: GPU, MPI

Thanks to:

- Dr. Edoardo Di Napoli
- Matthias Petschow
- Roman lakymchuk
- Elmar Peise
- Lucas Beyer

Financial support from the **Deutsche Forschungsge-meinschaft** (German Research Association) through grant GSC 111 is gratefully acknowledged.

Deutsche Forschungsgemeinschaft **DFG**

