Knowledge-Based Automatic Generation of Algorithms and Code

Diego Fabregat Traver

AICES, RWTH Aachen
fabregat@aices.rwth-aachen.de

Doctoral Defense
Aachen, December 6th, 2013
Introduction

Focus

Design and implementation of Domain-Specific Compilers for Linear Algebra matrix equations.

Why?

Matrix equations are ubiquitous
Complex and time consuming development
It requires expertise from multiple areas:
- Application domain
- Numerics, algorithmics
- High-performance computing

We are facing a productivity problem
Focus
Design and implementation of Domain-Specific Compilers for Linear Algebra matrix equations.

Why?
- Matrix equations are ubiquitous
Introduction

Focus
Design and implementation of Domain-Specific Compilers for Linear Algebra matrix equations.

Why?
- Matrix equations are ubiquitous
- Complex and time consuming development
Introduction

Focus
Design and implementation of Domain-Specific Compilers for Linear Algebra matrix equations.

Why?
- Matrix equations are ubiquitous
- Complex and time consuming development
- It requires expertise from multiple areas:
 - Application domain
 - Numerics, algorithmics
 - High-performance computing
Introduction

Focus
Design and implementation of Domain-Specific Compilers for Linear Algebra matrix equations.

Why?
- Matrix equations are ubiquitous
- Complex and time consuming development
- It requires expertise from multiple areas:
 - Application domain
 - Numerics, algorithmics
 - High-performance computing

We are facing a productivity problem
The productivity problem illustrated

Computational Scientist
The productivity problem illustrated

Computational Scientist

Code A
The productivity problem illustrated

Computational Scientist → Code A → HPC Expert
The productivity problem illustrated

Computational Scientist → Code A

HPC Expert → Code B
The productivity problem illustrated

Computational Scientist

HPC Expert

Code A

Code B

Diego Fabregat (AICES, RWTH Aachen)
The productivity problem illustrated

- Computational Scientist
- HPC Expert
- Code A
- Code B
- Code C
Example 1

Genome-Wide Association Study

\[b_i := (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \quad 1 \leq i \leq m \]

\[M \in \mathbb{R}^{n \times n}, \quad X \in \mathbb{R}^{n \times p}, \quad y \in \mathbb{R}^{n}, \quad b \in \mathbb{R}^{p} \]
Example 1

Genome-Wide Association Study

\[b_i := (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \quad 1 \leq i \leq m \]

\[M \in R^{n \times n}, X \in R^{n \times p}, y \in R^n, b \in R^p \]
Example 1
Genome-Wide Association Study

\[b_i := (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \quad 1 \leq i \leq m \]

\[M \in \mathbb{R}^{n \times n}, X \in \mathbb{R}^{n \times p}, y \in \mathbb{R}^n, b \in \mathbb{R}^p \]
Example 1

Genome-Wide Association Study

\[b_i := (X_i^T M^{-1} X_i)^{-1} X_i^T M^{-1} y \quad 1 \leq i \leq m \]

\[M \in \mathbb{R}^{n \times n}, X \in \mathbb{R}^{n \times p}, y \in \mathbb{R}^n, b \in \mathbb{R}^p \]
Example 2

Derivative of the Cholesky factorization

\[f : LL^T = A \rightarrow (\text{LAPACK, FLAME, ...}) \]
Example 2

Derivative of the Cholesky factorization

- \(f : LL^T = A \rightarrow \) (LAPACK, FLAME, ...
- \(f' : L'L^T + LL'T = A' \rightarrow ? \)
Example 2

Derivative of the Cholesky factorization

- $f : LL^T = A \rightarrow \text{(LAPACK, FLAME, ...)}$
- $f' : L'L^T + LL'^T = A' \rightarrow \ ?$

![Graph showing the derivative of the Cholesky factorization for matrix sizes and time taken.](image-url)
Example 2

Derivative of the Cholesky factorization

- \(f : LL^T = A \rightarrow (\text{LAPACK, FLAME, ...}) \)
- \(f' : L'L^T + LL'^T = A' \rightarrow ? \)

![Graph showing the derivative of the Cholesky factorization for different matrix sizes.](attachment:graph.png)
Example 2

Derivative of the Cholesky factorization

- \(f : LL^T = A \rightarrow (\text{LAPACK, FLAME, ...}) \)
- \(f' : L'L^T + LL'T = A' \rightarrow ? \)
The Goal

- Allow scientists to reason at the matrix equation level
- Relieve them from designing algorithms and writing code
The Goal

- Allow scientists to reason at the matrix equation level
- Relieve them from designing algorithms and writing code

- High-level language/interface: Equation + Knowledge

Diego Fabregat (AICES, RWTH Aachen)
The Goal

- Allow scientists to reason at the matrix equation level
- Relieve them from designing algorithms and writing code

- High-level language/interface: Equation + Knowledge
- Our compilers take care of:
 - Deriving efficient algorithms that exploit the available knowledge
 - Generating code that takes advantage of kernels from high-performance libraries
The Goal

- Allow scientists to reason at the matrix equation level
- Relieve them from designing algorithms and writing code

- High-level language/interface: Equation + Knowledge
- Our compilers take care of:
 - Deriving efficient algorithms that exploit the available knowledge
 - Generating code that takes advantage of kernels from high-performance libraries

Productivity (+ Performance)
1. Two Linear Algebra Compilers

2. CLAK

3. CL1CK

4. Contributions
Target: High-level equations
Target: High-level equations
Main idea: Decomposition onto building blocks

Algorithm 2: \[X := S^{-1}. \]

1: \[LL^T = S \] (Cholesky factorization)
2: \[L := L^{-1} \] (Triangular inverse)
3: \[X := L^T L \] (Matrix product)
Target: High-level equations
Main idea: Decomposition onto building blocks
Methodology: Replicate the reasoning of a human expert

\[X := S^{-1} \]

Algorithm 3: \[X := S^{-1}. \]

1. \[LL^T = S \] (Cholesky factorization)
2. \[L := L^{-1} \] (Triangular inverse)
3. \[X := L^T L \] (Matrix product)
Target: Building blocks
2nd Compiler: CL1CK

- Target: Building blocks
- Core idea: Loop-based blocked algorithms

\[LL^T = A \]

Partition \(A \rightarrow \begin{pmatrix} A_{TL} & \star \\ A_{BL} & A_{BR} \end{pmatrix} \)

where \(A_{TL} \) is \(0 \times 0 \)

While \(n(A_{TL}) < n(A) \) do

\[
\begin{pmatrix} A_{TL} & \star \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & \star & \star \\ A_{10} & A_{11} & \star \\ A_{20} & A_{21} & A_{22} \end{pmatrix}
\]

\[
A_{11} = \Gamma(A_{11}) \\
A_{21} = A_{21} \text{TRIL}(A_{11})^{-T} \\
A_{22} = A_{22} - A_{21}A_{21}^T
\]

\[
\begin{pmatrix} A_{TL} & \star \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & \star & \star \\ A_{10} & A_{11} & \star \\ A_{20} & A_{21} & A_{22} \end{pmatrix}
\]

endwhile
Target: Building blocks
Core idea: Loop-based blocked algorithms
Methodology: FLAME Project’s methodology

\[
LL^T = A \quad \rightarrow
\]

Partition

\[
A \rightarrow \begin{pmatrix}
A_{TL} & * \\
A_{BL} & A_{BR}
\end{pmatrix}
\]

where \(A_{TL} \) is \(0 \times 0 \)

While \(n(A_{TL}) < n(A) \) **do**

\[
\begin{pmatrix}
A_{TL} & * \\
A_{BL} & A_{BR}
\end{pmatrix} \rightarrow \begin{pmatrix}
A_{00} & * & * \\
A_{10} & A_{11} & * \\
A_{20} & A_{21} & A_{22}
\end{pmatrix}
\]

\[
A_{11} = \Gamma(A_{11}) \\
A_{21} = A_{21} \text{TRIL}(A_{11})^{-T} \\
A_{22} = A_{22} - A_{21}A_{21}^T
\]

endwhile
Two Linear Algebra Compilers

CLAK

CL1CK

Contributions
Operand declaration
- Type: Matrix, Vector, Scalar
- Properties: LowerTriangular, UpperTriangular, Symmetric, FullRank, ...
CLAK: The Input

- Operand declaration
 - Type: Matrix, Vector, Scalar
 - Properties: LowerTriangular, UpperTriangular, Symmetric, FullRank, ...

- Operation
 - Operators: +, -, *, -1, T

Equation SEQ_OLS

Vector b <Output>
Matrix X <Input, FullRank, ColumnPanel>
Vector y <Input>

b\{i\} = inv(trans(X\{i\}) * X\{i\}) * trans(X\{i\}) * y
CLAK: The Input

- **Operand declaration**
 - Type: Matrix, Vector, Scalar
 - Properties: LowerTriangular, UpperTriangular, Symmetric, FullRank, ...

- **Operation**
 - Operators: +, -, *, -1, T
 - `<lhs> = <expression>`
 - Any valid combination of operands and operators

```c
Vector b <Output>
Matrix X <Input, FullRank, ColumnPanel>
Vector y <Input>

# Equation
b[i] = inv( trans(X[i]) * X[i] ) * trans(X[i]) * y
```

Diego Fabregat (AICES, RWTH Aachen)

Knowledge-Based Auto Gen of Algs and Code

December 6th, 2013 11 / 45
CLAK: The Input

- **Operand declaration**
 - Type: Matrix, Vector, Scalar
 - Properties: LowerTriangular, UpperTriangular, Symmetric, FullRank, ...

- **Operation**
 - Operators: +, -, *, -1, T
 - <lhs> = <expression>
 - Any valid combination of operands and operators
 - Operands may be labeled with subscripts (sequences of problems)

Diego Fabregat (AICES, RWTH Aachen)

Knowledge-Based Auto Gen of Algs and Code

December 6th, 2013 11 / 45
CLAK: The Input

- **Operand declaration**
 - Type: Matrix, Vector, Scalar
 - Properties: LowerTriangular, UpperTriangular, Symmetric, FullRank, ...

- **Operation**
 - Operators: +, -, *, -1, T
 - `<lhs> = <expression>`
 - Any valid combination of operands and operators
 - Operands may be labeled with subscripts (sequences of problems)

Equation SEQ_OLS

```plaintext
# Operands declaration
Vector b <Output>;
Matrix X <Input, FullRank, ColumnPanel>;
Vector y <Input>;

# Equation
b{i} = inv( trans(X{i}) * X{i} ) * trans(X{i}) * y
```

Diego Fabregat (AICES, RWTH Aachen)
The same way that a traditional compiler...

- ... breaks a program into **assembly instructions** ...
- ... directly supported by **the processor** ...
- ... attempting different types of **optimizations**,
The same way that a traditional compiler...

- breaks a program into assembly instructions ...
- directly supported by the processor ...
- attempting different types of optimizations,

CLAK ...

- breaks a target operation down to building blocks ...
- directly supported by high-performance libraries, ...
- tailoring the algorithm to the application.
Building blocks

Traditional Comp.
- ADD
- MUL
- DIV
- XOR

Linear Algebra Comp.
- $LU = A$ (LU)
- $LL^T = A$ (Cholesky)
- $ZWZ^T = A$ (Eigendec)
- $C := AB$ (MM)
- $y := Ax$ (MV)
- $Ax = b$ (TRSV)
CLAK: The Approach

CLAK aims at replicating the reasoning of a human expert.
CLAK: The Approach

CLAK aims at replicating the reasoning of a human expert

We ...
- studied the steps an expert takes,
- encoded them in a set of heuristics, and
- incorporated these heuristics into CLAK
The inverse operator receives a special treatment.
The inverse operator receives a special treatment

\[x := A^{-1}b \]
The inverse operator receives a special treatment

\[x := A^{-1}b \]

1: \[C := A^{-1} \]
2: \[x := C b \]
The inverse operator receives a special treatment

\[x := A^{-1}b \]

1: \(C := A^{-1} \)
2: \(x := C \cdot b \)

1: \(LU = A \) (GETRF)

Do not invert unless really required.
The inverse operator receives a special treatment

\[x := (LU)^{-1} b \]

1. \(C := A^{-1} \)
2. \(x := C b \)
The inverse operator receives a special treatment

\[x := U^{-1} L^{-1} b \]

1. \(C := A^{-1} \)
2. \(x := C b \)
The inverse operator receives a special treatment

\[x := U^{-1} L^{-1} b \]

1. \(C := A^{-1} \)
2. \(x := C b \)

1. \(LU = A \) (GETRF)
2. \(y := L^{-1} b \) (TRSV)

Do not invert unless really required.
The inverse operator receives a special treatment

\[x := U^{-1}L^{-1}b \]

1: \(C := A^{-1} \)
2: \(x := C b \)

\[LU = A \quad \text{(GETRF)} \]
\[y := L^{-1}b \quad \text{(TRSV)} \]
\[x := U^{-1}y \quad \text{(TRSV)} \]
The inverse operator receives a special treatment

\[x := U^{-1} L^{-1} b \]

1: \(C := A^{-1} \)
2: \(x := C \, b \)

1: \(LU = A \) (GETRF)
2: \(y := L^{-1} b \) (TRSV)
3: \(x := U^{-1} y \) (TRSV)

Do not invert unless really required
Identify opportunities for optimizations (i.e., reducing the complexity)
Identify opportunities for optimizations (i.e., reducing the complexity)

\[
\alpha := y^T L^{-1} L^{-T} y
\]
Identify opportunities for optimizations (i.e., reducing the complexity)

\[\alpha := y^T L^{-1} L^{-T} y \]

Computation reuse

1: \(x := L^{-T} y \)
2: \(\alpha := x^T x \)
Identify opportunities for optimizations (i.e., reducing the complexity)

\[y := ABx \]
Identify opportunities for optimizations (i.e., reducing the complexity)

\[y := ABx \]

Algorithm 1

1. \(C := AB \quad O(n^3) \)
2. \(y := Cx \quad O(n^2) \)
Identify opportunities for optimizations (i.e., reducing the complexity)

\[y := ABx \]

Algorithm 1

1: \(C := AB \) \(O(n^3) \)
2: \(y := Cx \) \(O(n^2) \)

Algorithm 2

1: \(t := Bx \) \(O(n^2) \)
2: \(y := At \) \(O(n^2) \)
CLAK: Heuristics

Reduced dimensionality

Identify opportunities for optimizations (i.e., reducing the complexity)

\[y := ABx \]

Algorithm 1
1. \(C := AB \) \(O(n^3) \)
2. \(y := Cx \) \(O(n^2) \)

Algorithm 2
1. \(t := Bx \) \(O(n^2) \)
2. \(y := At \) \(O(n^2) \)

Priorities: Matrix-Vector over Matrix-Matrix
CLAK applies these heuristics mechanically:
CLAK: Tree of decompositions

CLAK applies these heuristics mechanically:

- Process inverses until only applied to matrices in factored form
- Then, map the resulting expressions onto kernels
CLAK applies these heuristics mechanically:

- Process inverses until only applied to matrices in factored form
- Then, map the resulting expressions onto kernels

As a result, CLAK generates a tree of decompositions:

\[
\begin{align*}
&x := A^{-1}b \\
&LL^T = A \\
&x := L^{-T}L^{-1}b \\
&t1 := L^{-1}b \\
&t4 := L^{-T}t1 \\
&x := t4 \\
&t7 := Z t6 \\
&t := t7 \\
&QR = A \\
&x := R^{-1}QTb \\
&t2 := QTb \\
&t5 := R^{-1}t2 \\
&x := t5 \\
&t := t5 \\
&ZWZ^T = A \\
&x := ZW^{-1}Z^Tb \\
&t3 := Z^Tb \\
&t6 := W^{-1}t3 \\
&x := t6 \\
&t := t6 \\
&LL^T = A \\
&QR = A \\
&ZWZ^T = A
\end{align*}
\]
Phase 1: Dealing with the inverse operator

Factorizations

<table>
<thead>
<tr>
<th>Matrix Property</th>
<th>Factorizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric</td>
<td>LDL, QR, Eigendecomposition</td>
</tr>
<tr>
<td>SPD</td>
<td>Cholesky, QR, Eigendecomposition</td>
</tr>
<tr>
<td>Column Panel</td>
<td>QR</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Reducing complexity

- Prioritization based on dimensionality of the operands:

<table>
<thead>
<tr>
<th>#</th>
<th>Kernels</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>inner product</td>
<td>$\alpha := x^T y$</td>
</tr>
<tr>
<td>2</td>
<td>matrix-vector operations</td>
<td>$y := Ax, \ b := L^{-1} x$</td>
</tr>
<tr>
<td>3</td>
<td>matrix-matrix operations</td>
<td>$C := AB, \ B := L^{-1} A$</td>
</tr>
<tr>
<td>4</td>
<td>outer product</td>
<td>$A := xy^T$</td>
</tr>
<tr>
<td>5</td>
<td>inversion of a triangular matrix</td>
<td>$C := L^{-1}$</td>
</tr>
</tbody>
</table>

- Common segments ($\alpha := y^T L^{-1} L^{-T} y$)
Built in a modular fashion

- Matrix algebra
- Inference of knowledge
- Other modules
CLAK: The Compiler’s Engine

Modules: Matrix Algebra

\[(A \times B)^T \rightarrow B^T \times A^T\]

\[(A \times B)^{-1} \land \text{Square}(A) \land \text{Square}(B) \rightarrow B^{-1} \times A^{-1}\]

\[Q^T \times Q \land \text{Orthogonal}(Q) \rightarrow I\]

\[A^{-1} \times A \rightarrow I\]

\[A \times I \land \text{Matrix}(A) \rightarrow A\]
CLAK: The Compiler’s Engine

Modules: Matrix Algebra

<table>
<thead>
<tr>
<th>Rule</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A \times B)^T) \rightarrow (B^T \times A^T)</td>
<td></td>
</tr>
<tr>
<td>((A \times B)^{-1} \land \text{Square}(A) \land \text{Square}(B)) \rightarrow (B^{-1} \times A^{-1})</td>
<td></td>
</tr>
<tr>
<td>(Q^T \times Q \land \text{Orthogonal}(Q)) \rightarrow (I)</td>
<td></td>
</tr>
<tr>
<td>(A^{-1} \times A) \rightarrow (I)</td>
<td></td>
</tr>
<tr>
<td>(A \times I \land \text{Matrix}(A)) \rightarrow (A)</td>
<td></td>
</tr>
</tbody>
</table>

\[(((QR)^T QR)^{-1}(QR)^T L^{-1}y \rightarrow R^{-1}Q^T L^{-1}y \]
\[(A \times B)^T \rightarrow B^T \times A^T\]
\[(A \times B)^{-1} \land \text{Square}(A) \land \text{Square}(B) \rightarrow B^{-1} \times A^{-1}\]
\[Q^T \times Q \land \text{Orthogonal}(Q) \rightarrow I\]
\[A^{-1} \times A \rightarrow I\]
\[A \times I \land \text{Matrix}(A) \rightarrow A\]

\[((QR)^T QR)^{-1} (QR)^T L^{-1} y \rightarrow R^{-1} Q^T L^{-1} y\]
\[(ZW Z^T + I)^{-1} \rightarrow Z(W + I)^{-1} Z^T\]
CLAK: The Compiler’s Engine

Modules: Matrix Algebra

\[(A \times B)^T \rightarrow B^T \times A^T\]

\[(A \times B)^{-1} \land \text{Square}(A) \land \text{Square}(B) \rightarrow B^{-1} \times A^{-1}\]

\[Q^T \times Q \land \text{Orthogonal}(Q) \rightarrow I\]

\[A^{-1} \times A \rightarrow I\]

\[A \times I \land \text{Matrix}(A) \rightarrow A\]

\[((QR)^T QR)^{-1} (QR)^T L^{-1} y \rightarrow R^{-1} Q^T L^{-1} y\]

\[(ZWZ^T + I)^{-1} \rightarrow Z(W + I)^{-1} Z^T\]

About 50 such rules
Type of operand:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Constraint</th>
<th>Inferred Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \times B$</td>
<td>$\text{Matrix}(A) \land \text{Matrix}(B)$</td>
<td>$\text{Matrix}(A \times B)$</td>
</tr>
<tr>
<td>$A \times x$</td>
<td>$\text{Matrix}(A) \land \text{Vector}(x)$</td>
<td>$\text{Vector}(A \times x)$</td>
</tr>
<tr>
<td>$x^T \times y$</td>
<td>$\text{Vector}(x) \land \text{Vector}(y)$</td>
<td>$\text{Scalar}(x^T \times y)$</td>
</tr>
</tbody>
</table>
Type of operand:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Constraint</th>
<th>Inferred Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \times B$</td>
<td>$\text{Matrix}(A) \land \text{Matrix}(B)$</td>
<td>$\text{Matrix}(A \times B)$</td>
</tr>
<tr>
<td>$A \times x$</td>
<td>$\text{Matrix}(A) \land \text{Vector}(x)$</td>
<td>$\text{Vector}(A \times x)$</td>
</tr>
<tr>
<td>$x^T \times y$</td>
<td>$\text{Vector}(x) \land \text{Vector}(y)$</td>
<td>$\text{Scalar}(x^T \times y)$</td>
</tr>
</tbody>
</table>

Matrix factorizations (properties of factors):

\[QR (QR = A): \]

Input A: matrix, column-panel, full rank
Output Q: matrix, orthogonal, column-panel, full rank
R: matrix, square, upper triangular, full rank
Building blocks:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Constraint</th>
<th>Inferred Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1 + \cdots + S_n$</td>
<td>$\forall_i \text{Symmetric}(S_i)$</td>
<td>Symmetric</td>
</tr>
<tr>
<td>$-S$</td>
<td>$\text{Symmetric}(S)$</td>
<td>Symmetric</td>
</tr>
<tr>
<td>S^T</td>
<td>$\text{Symmetric}(S)$</td>
<td>Symmetric</td>
</tr>
<tr>
<td>S^{-1}</td>
<td>$\text{Symmetric}(S)$</td>
<td>Symmetric</td>
</tr>
<tr>
<td>expr</td>
<td>expr $==$ exprT</td>
<td>Symmetric</td>
</tr>
</tbody>
</table>

More than a hundred such rules!
Building blocks:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Constraint</th>
<th>Inferred Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_1 + \cdots + S_n$</td>
<td>$\forall_i \text{Symmetric}(S_i)$</td>
<td>Symmetric</td>
</tr>
<tr>
<td>$-S$</td>
<td>$\text{Symmetric}(S)$</td>
<td>Symmetric</td>
</tr>
<tr>
<td>S^T</td>
<td>$\text{Symmetric}(S)$</td>
<td>Symmetric</td>
</tr>
<tr>
<td>S^{-1}</td>
<td>$\text{Symmetric}(S)$</td>
<td>Symmetric</td>
</tr>
<tr>
<td>expr</td>
<td>$\text{expr} == \text{expr}^T$</td>
<td>Symmetric</td>
</tr>
</tbody>
</table>

More than a hundred such rules!
Algorithm 4 CLAK-EIG

1. $Z \Lambda Z^T = \Phi$
2. for $i := 1$ to m do
3. \[K_i := X_i^T Z \]
4. end for
5. for $j := 1$ to t do
6. \[D_j := h_j \Lambda + (1 - h_j)I \]
7. \[y_j := Z^T y_j \]
8. for $i := 1$ to m do
9. \[V_{ij} := K_i D_j^{-1} \]
10. \[A_{ij} := V_{ij} K_i^T \]
11. \[Q_{ij} R_{ij} = A_{ij} \]
12. \[b_{ij} := V_{ij} y_j \]
13. \[b_{ij} := Q_{ij}^T b_{ij} \]
14. \[b_{ij} := R_{ij}^{-1} b_{ij} \]
15. end for
16. end for
Derivative Operator

\[z = \alpha \times x + y \quad \longrightarrow \quad \text{dv}(z = \alpha \times x + y) \ ?:\]

- \[\text{dv}(z) = \text{dv}(\alpha) \times x + \alpha \times \text{dv}(x) + \text{dv}(y) \]
- \[\text{dv}(z) = \text{dv}(\alpha) \times x + \alpha \times \text{dv}(x) \]
- \[\text{dv}(z) = \text{dv}(\alpha) \times x \]
- \[\ldots \]
function [b] = GWAS_26_2(X, y, h, Phi, sm, sn, nXs, nys)
 b = zeros(sm, nXs * nys);
 T3 = zeros(sm, sn * nXs);
 [Z1, W1] = eig(Phi);

 for i = 1:nXs
 T3(:, sn*(i-1)+1:sn*i) = X(:, sm*(i-1)+1:sm*i)' * Z1;
 end

 for j = 1:nys
 T1 = 1 * eye(sn) + - h(j) * eye(sn);
 T2 = T1 + h(j) * W1;
 T6 = Z1' * y(:, j);
 for i = 1:nXs
 [...]
 end
SUBROUTINE GWAS_26_2(X, csX, dsX, y, csy, h, Phi, csPhi, b, csb, sn, sm, nXs, nys)

INTEGER sn, sm, nXs, nys, csX, dsX, csy, csPhi, csb

[...]
call dsyevr('V', 'A', 'L', sn, Phi(1, 1), sn, ddummy, ddummy, idummy, idummy, ddummy, nCompPairs5, W8(1), Z7(1, 1), sn, isuppz4, ...)

DO i = 1, nXs
 call dgemm('T', 'N', sm, sn, sn, ONE, X(1, 1, i), sn, Z7(1, 1), sn, ZERO, tmp70(1, 1, i), sm)
END DO

DO j = 1, nys
 DO iter1 = 1, sn
 tmp28(iter1) = 1 + (- h(j))
 [...]
Sample of targeted operations

- Matrix inversions
- Multiple linear systems
- Ordinary least-squares
- Generalized least-squares
- Sequences of problems
Sample of targeted operations

- Matrix inversions
- Multiple linear systems
- Ordinary least-squares
- Generalized least-squares
- Sequences of problems
- Equations arising in Genome-wide association studies
- Derivatives of matrix products
- Derivatives of linear systems
1. Two Linear Algebra Compilers

2. CLAK

3. CL1ck

4. Contributions
CL1CK: The Methodology

FLAME Methodology
- More than a decade of development
- Many algorithms derived by hand and incorporated into libraries (FLAME, Elemental)
- Manual derivation becomes tedious and error prone when the complexity of the equations increases

CL1CK demonstrates...
- FLAME methodology can be applied automatically
- The broad applicability of the methodology
Operations are described by means of two predicates: The *Precondition* \((P_{\text{pre}})\) and the *Postcondition* \((P_{\text{post}})\).
Operations are described by means of two predicates: The \textit{Precondition} (P_{pre}) and the \textit{Postcondition} (P_{post}).

\textbf{Example: Derivative of Cholesky}

\[G = g\text{Chol}(L, B) \equiv \begin{cases}
 P_{\text{pre}} : \{ \text{Output}(G) \land \text{Input}(L) \land \text{Input}(B) \land \\
 \text{Matrix}(G) \land \text{Matrix}(L) \land \text{Matrix}(B) \land \\
 \text{LowerTriangular}(G) \land \text{Symmetric}(B) \land \\
 \text{LowerTriangular}(L) \} \\
 P_{\text{post}} : \{ GL^T + LG^T = B \}
\end{cases} \]
CL1CK: The Methodology

CL1CK implements the FLAME methodology in 3 stages:
\[G = gChol(L, B) \equiv \begin{cases} \begin{align*} P_{\text{pre}} : & \text{Output}(G) \land \text{Input}(L) \land \text{Input}(B) \land \\ & \text{Matrix}(G) \land \text{Matrix}(L) \land \text{Matrix}(B) \land \\ & \text{LowerTriangular}(G) \land \text{Symmetric}(B) \land \\ & \text{LowerTriangular}(L) \end{align*} \end{cases} \]

\[P_{\text{post}} : \{GL^T + LG^T = B\} \]
\(G = gChol(L, B) \equiv \)

\[
P_{\text{pre}} : \{ \text{Output}(G) \land \text{Input}(L) \land \text{Input}(B) \land \\
\text{Matrix}(G) \land \text{Matrix}(L) \land \text{Matrix}(B) \land \\
\text{LowerTriangular}(G) \land \text{Symmetric}(B) \land \\
\text{LowerTriangular}(L) \}
\]

\[
P_{\text{post}} : \{ GL^T + LG^T = B \}
\]

\[
\downarrow
\]

equal[

isMatrixQ[L] && isMatrixQ[B] && isMatrixQ[G] &&

isLowerTriQ[L] && isSymmetricQ[B] && isLowerTriQ[G]
Partitioned Matrix Expressions are generated in 3 steps:

1. Decompose the problem into smaller ones
2. Find out how to solve the sub-problems
3. Combine the solutions
$GL^T + LG^T = B$
CL1CK: PME Generation

Decomposition into subproblems

\[GL^T + LG^T = B \]

\[
\begin{pmatrix}
G_{TL} & 0 \\
G_{BL} & G_{BR}
\end{pmatrix}
\begin{pmatrix}
L_{TL}^T & L_{BL}^T \\
0 & L_{BR}^T
\end{pmatrix}
+ \begin{pmatrix}
L_{TL} & 0 \\
L_{BL} & L_{BR}
\end{pmatrix}
\begin{pmatrix}
G_{TL}^T & G_{BL}^T \\
0 & G_{BR}^T
\end{pmatrix}
= \begin{pmatrix}
B_{TL} & B_{BL}^T \\
B_{BL} & B_{BR}
\end{pmatrix}
\]
\[
GL^T + LG^T = B
\]

\[
\downarrow
\]

\[
\begin{pmatrix}
G_{TL} & 0 \\
G_{BL} & G_{BR}
\end{pmatrix}
\begin{pmatrix}
L_{TL}^T & L_{BL}^T \\
0 & L_{BR}^T
\end{pmatrix}
+ \begin{pmatrix}
L_{TL} & 0 \\
L_{BL} & L_{BR}
\end{pmatrix}
\begin{pmatrix}
G_{TL}^T & G_{BL}^T \\
0 & G_{BR}^T
\end{pmatrix}
= \begin{pmatrix}
B_{TL} & B_{BL}^T \\
B_{BL} & B_{BR}
\end{pmatrix}
\]

\[
\downarrow
\]

\[
\begin{pmatrix}
G_{TL}L_{TL}^T + L_{TL}G_{TL}^T = B_{TL} \\
G_{BL}L_{TL}^T + L_{BL}G_{TL}^T = B_{BL} \\
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T = B_{BR}
\end{pmatrix}
\]
Identifying the subproblems

\[
\begin{align*}
G_{TL}L_{TL}^T + L_{TL}G_{TL}^T &= B_{TL} \\
G_{BL}L_{BL}^T + L_{BL}G_{BL}^T &= B_{BL}
\end{align*}
\]

\[
\begin{align*}
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T &= B_{BR}
\end{align*}
\]
Identifying the subproblems

\[
\begin{pmatrix}
G_{TL}L_{TL}^T + L_{TL}G_{TL}^T &= B_{TL} \\
G_{BL}L_{TL}^T + L_{BL}G_{TL}^T &= B_{BL} \\
\end{pmatrix}
\]

\[
\Downarrow
\]

\[
\begin{pmatrix}
G_{TL} := gChol(L_{TL}, B_{TL}) \\
G_{BL}L_{TL}^T + L_{BL}G_{TL}^T &= B_{BL} \\
\end{pmatrix}
\]
Identifying the subproblems

\[
\begin{align*}
G_{TL} &:= gChol(L_{TL}, B_{TL}) \\
G_{BL}L_{TL}^T + L_{BL}G_{TL}^T &= B_{BL} \\
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T &= B_{BR}
\end{align*}
\]
CL1CK: PME Generation

Identifying the subproblems

\(G_{TL} := gChol(L_{TL}, B_{TL}) \)

\[
\begin{align*}
G_{BL}L_{TL}^T + L_{BL}G_{TL}^T &= B_{BL} \\
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T &= B_{BR}
\end{align*}
\]

\[
\downarrow
\]

\[
\begin{align*}
G_{TL} := gChol(L_{TL}, B_{TL}) \\
G_{BL}L_{TL}^T &= B_{BL} - L_{BL}G_{TL}^T \\
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T &= B_{BR}
\end{align*}
\]
Identifying the subproblems

\[
\begin{align*}
G_{TL} & := g\text{Chol}(L_{TL}, B_{TL}) \\
G_{BL}L_{TL}^T & = B_{BL} - L_{BL}G_{TL}^T \\
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T & = B_{BR}
\end{align*}
\]
Identifying the subproblems

\[
G_{TL} := gChol(L_{TL}, B_{TL})
\]

\[
G_{BL}L_{TL}^T = B_{BL} - L_{BL}G_{TL}^T
\]

\[
\begin{align*}
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T &= B_{BR} \\
\end{align*}
\]

\[
G_{TL} := gChol(L_{TL}, B_{TL})
\]

\[
G_{BL} := (B_{BL} - L_{BL}G_{TL}^T)L_{TL}^{-T}
\]

\[
\begin{align*}
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T &= B_{BR} \\
\end{align*}
\]
Identifying the subproblems

\[
\left(\begin{array}{c}
G_{TL} := gChol(L_{TL}, B_{TL}) \\
G_{BL} := (B_{BL} - L_{BL}G_{TL}^T)L_{TL}^{-T}
\end{array} \right) \times
\left(
\begin{array}{c}
G_{BL}L_{BL}^T + G_{BR}L_{BR}^T + L_{BL}G_{BL}^T + L_{BR}G_{BR}^T = B_{BR}
\end{array} \right)
\]
Identifying the subproblems

\[
\begin{align*}
G_{TL} &:= g\text{Chol}(L_{TL}, B_{TL}) \\
G_{BL} &:= (B_{BL} - L_{BL}G_{TL}^{T})L_{TL}^{-T}
\end{align*}
\]

\[
\frac{G_{BL}L_{BL}^{T} + G_{BR}L_{BR}^{T} + L_{BL}G_{BL}^{T} + L_{BR}G_{BR}^{T} = B_{BR}}{G_{BR}L_{BR}^{T} + L_{BR}G_{BR}^{T} = B_{BR} - G_{BL}L_{BL}^{T} - L_{BL}G_{BL}^{T}}
\]
Identifying the subproblems

\[
\begin{align*}
G_{TL} &:= g\text{Chol}(L_{TL}, B_{TL}) \\
G_{BL} &:= (B_{BL} - L_{BL} G_{TL}^T) L_{TL}^{-T} \\
G_{BR} L_{BR}^T + L_{BR} G_{BR}^T &= B_{BR} - G_{BL} L_{BL}^T - L_{BL} G_{BL}^T
\end{align*}
\]
The PME

\[
\begin{align*}
G_{TL} & := gChol(L_{TL}, B_{TL}) \\
G_{BL} & := (B_{BL} - L_{BL}G_{TL}^T)L_{TL}^{-T} \quad \Rightarrow \quad G_{BR}L_{BR}^{T} + L_{BR}G_{BR}^{T} = B_{BR} - G_{BL}L_{BL}^{T} - L_{BL}G_{BL}^{T}
\end{align*}
\]
Triangular Sylvester Equation ($AX + XB = C$):

\[
\begin{pmatrix}
X_{TL} := \Omega(A_{TL}, B_{TL}, C_{TL}) \\
X_{TR} := \Omega(A_{TL}, B_{BR}, C_{TR} - X_{TL}B_{TR}) \\
X_{BL} := \Omega(A_{BR}, B_{TL}, C_{BL} - A_{BL}X_{TL}) \\
X_{BR} := \Omega(A_{BR}, B_{BR}, C_{BR} - X_{BL}B_{TR} - A_{BL}X_{TR})
\end{pmatrix}
\]
Triangular Sylvester Equation \((AX + XB = C)\):

\[
\begin{align*}
X_{TL} &:= \Omega(A_{TL}, B_{TL}, C_{TL}) \\
X_{TR} &:= \Omega(A_{TL}, B_{BR}, C_{TR} - X_{TL}B_{TR}) \\
X_{BL} &:= \Omega(A_{BR}, B_{TL}, C_{BL} - A_{BL}X_{TL}) \\
X_{BR} &:= \Omega(A_{BR}, B_{BR}, C_{BR} - X_{BL}B_{TR} - A_{BL}X_{TR})
\end{align*}
\]

Triangular Lyapunov Equation \((AX + XA^T = C)\):

\[
\begin{align*}
X_{TL} &:= \Lambda(A_{TL}, C_{TL}) \\
X_{BL} &:= \Omega(A_{BR}, A_{TL}^T, C_{BL} - A_{BL}X_{TL}) \\
X_{BR} &:= \Lambda(A_{BR}, C_{BR} - X_{BL}A_{BL}^T - A_{BL}X_{BL}^T)
\end{align*}
\]
\[
\begin{align*}
X_{TL} & := \Omega(A_{TL}, B_{TL}, C_{TL}) \\
X_{BL} & := \Omega(A_{BR}, B_{TL}, C_{BL} - A_{BL}X_{TL}) \\
X_{TR} & := \Omega(A_{TL}, B_{BR}, C_{TR} - X_{TL}B_{TR}) \\
X_{BR} & := \Omega(A_{BR}, B_{BR}, C_{BR} - X_{BL}B_{TR} - A_{BL}X_{TR})
\end{align*}
\]
Partition
\[B \rightarrow \left(\begin{array}{c|c|c} B_{TL} & \ast & \ast \\ \hline B_{BL} & B_{BR} & \end{array} \right) , \quad L \rightarrow \left(\begin{array}{c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array} \right) , \quad G \rightarrow \left(\begin{array}{c|c|c} G_{TL} & 0 \\ \hline G_{BL} & G_{BR} \end{array} \right) \]

where \(B_{TL}, L_{TL}, \) and \(G_{TL} \) are \(0 \times 0 \)

while
\[\text{size}(B_{TL}) < \text{size}(B) \text{ do} \]

\[
\begin{align*}
\left(\begin{array}{c|c|c} B_{TL} & \ast & \ast \\ \hline B_{BL} & B_{BR} & \end{array} \right) & \rightarrow \left(\begin{array}{c|c|c} B_{00} & \ast & \ast \\ \hline B_{10} & B_{11} & \ast \\ \hline B_{20} & B_{21} & B_{22} \end{array} \right), \\
\left(\begin{array}{c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array} \right) & \rightarrow \left(\begin{array}{c|c|c} L_{00} & 0 & 0 \\ \hline L_{10} & L_{11} & 0 \\ \hline L_{20} & L_{21} & L_{22} \end{array} \right), \ldots
\end{align*}
\]

Variant 1

\[
G_{10} := B_{10} - L_{10} G_{00}^T
\]

\[
G_{11} := B_{11} - G_{10} L_{10}^T - L_{10} G_{10}^T
\]

\[
G_{11} := \text{gChol}(G_{11}, L_{11})
\]

Variant 2

\[
G_{10} := G_{10} L_{00}^{-T}
\]

\[
G_{11} := B_{11} - G_{10} L_{10}^T - L_{10} G_{10}^T
\]

\[
G_{11} := \text{gChol}(G_{11}, L_{11})
\]

Variant 3

\[
\ldots
\]

Variant 4

\[
\ldots
\]

\[
\left(\begin{array}{c|c|c} B_{TL} & \ast & \ast \\ \hline B_{BL} & B_{BR} & \end{array} \right) \leftarrow \left(\begin{array}{c|c|c} B_{00} & \ast & \ast \\ \hline B_{10} & B_{11} & \ast \\ \hline B_{20} & B_{21} & B_{22} \end{array} \right), \\
\left(\begin{array}{c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array} \right) \leftarrow \left(\begin{array}{c|c|c} L_{00} & 0 & 0 \\ \hline L_{10} & L_{11} & 0 \\ \hline L_{20} & L_{21} & L_{22} \end{array} \right), \ldots
\]

endwhile
void gChol_blk_var1(FLA_Obj G, FLA_Obj L, int nb)
{
 FLA_Obj GTL, GTR, GBL, GBR, GO0, G01, G02, G10, G11, G12, G20, G21, G22;
 FLA_Obj LTL, LTR, LBL, LBR, L00, L01, L02, L10, L11, L12, L20, L21, L22;

 FLA_Part_2x2(G, >L, >R,
 &GBL, &GBR, 0, 0, FLA_TL);
 [...]
 while (FLA_Obj_length(GTL) < FLA_Obj_length(G)) {
 FLA_Repart_2x2_to_3x3(GTL, GTR, &G00, &G01, &G02,
 &G10, &G11, &G12,
 &GBL, &GBR, &G20, &G21, &G22, nb, nb, FLA_BR);
 [...]
 FLA_Trmmsx_external(FLA_RIGHT, FLA_LOWER_TRIANGULAR,
 FLA_TRANSPOSE, FLA_NONUNIT_DIAG,
 FLA_MINUS_ONE, GO0, L10, FLA_ONE, G10);
 FLA_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR, FLA_TRANSPOSE,
 FLA_NONUNIT_DIAG, FLA_ONE, L00, G10);
 FLA_Syr2k(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,
 FLA_MINUS_ONE, G10, L10, FLA_ONE, G11);
 FLA_gChol_unb(G11, L11);
 [...]
 }
}
Sample of targeted operations

- **BLAS(-like)**
 - BLAS 3: GEMM, SYMM, SYRK, TRSM, ...
 - BLAS 2: GEMV, SYMV, GER, TRSV, ...
 - BLAS 1: AXPY, DOT, ...

- **LAPACK**
 - Factorizations
 - Inverses

- **RECSY**
 - Continuous-time Sylvester
 - Continuous-time Lyapunov
Sample of targeted operations

- **BLAS(-like)**
 - BLAS 3: GEMM, SYMM, SYRK, TRSM, ...
 - BLAS 2: GEMV, SYMV, GER, TRSV, ...
 - BLAS 1: AXPY, DOT, ...

- **LAPACK**
 - Factorizations
 - Inverses

- **RECSY**
 - Continuous-time Sylvester
 - Continuous-time Lyapunov

- **Derivatives of the above**
 - Dv(Triangular solve)
 - Dv(Cholesky)
 - ...
Two Linear Algebra Compilers

CLAK

CL1CK

Contributions
CLAK

- High-level matrix equations
- Decomposition onto building blocks
- Replicate reasoning of a human expert
- Search guided by knowledge
- Prototypes of code generators (Matlab, Fortran)
Contributions

CLAK
- High-level matrix equations
- Decomposition onto building blocks
- Replicate reasoning of a human expert
- Search guided by knowledge
- Prototypes of code generators (Matlab, Fortran)

CL1CK
- Building blocks
- Full automation of FLAME’s methodology
- Dynamically increases its knowledge-base
- Potential to derive entire libraries of kernels
Additional results

- Inference engine for dynamic deduction of knowledge/properties
Contributions

Additional results

- Inference engine for dynamic deduction of knowledge/properties
- Study: DSCs vs ADIFOR for differentiated BLAS and LAPACK ops
Additional results

- Inference engine for dynamic deduction of knowledge/properties
- Study: DSCs vs ADIFOR for differentiated BLAS and LAPACK ops
- OmicABEL in GenABEL (large speedups, state-of-the-art)
** Publications **

** CLAK **

** CL1ck **
Computational Biology

Fabregat & Bientinesi. Computing petaflops over terabytes of data: The case of genome-wide association studies. *ACM Transactions on Mathematical Software (TOMS)*.

Tensor Contractions

Di Napoli, Fabregat, Quintana & Bientinesi. Towards an efficient use of the BLAS library for multilinear tensor contractions. *Applied Mathematics and Computation journal (AMC)*. Accepted pending minor revision.
Future research directions

- Integration of performance analysis techniques
Future research directions

- Integration of performance analysis techniques
- Algorithm analysis and code generation for parallel archs
Future research directions

- Integration of performance analysis techniques
- Algorithm analysis and code generation for parallel archs
- Extend the scope of CLAK
Future research directions

- Integration of performance analysis techniques
- Algorithm analysis and code generation for parallel archs
- Extend the scope of CLAK
- Further explore the potential of our DSCs on AD
Thanks to:

- Examination Committee
- HPAC
- Collaborators
- AICES Students and Service team
- RWTH Computing Center, DAAD

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111 is gratefully acknowledged.