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Abstract

We investigate the performance of the routines in LAPACK and the
Successive Band Reduction (SBR) toolbox for the reduction of a dense
matrix to tridiagonal form, a crucial preprocessing stage in the solution of
the symmetric eigenvalue problem, on general-purpose multi-core proces-
sors. In response to the advances of hardware accelerators, we also modify
the code in the SBR toolbox to accelerate the computation by off-loading
a significant part of the operations to a graphics processor (GPU). Perfor-
mance results illustrate the parallelism and scalability of these algorithms
on current high-performance multi-core and many-core architectures.

1 Introduction

We consider the solution of the symmetric eigenvalue problem AX = XΛ, where
A ∈ Rn×n is a dense symmetric matrix, Λ = diag(λ1, λ2, . . . , λn) ∈ Rn×n is a
diagonal matrix containing the eigenvalues of A, and the j-th column of the
orthogonal matrix X ∈ Rn×n is an eigenvector associated with λj [9]. Given
the matrix A, the objective is to compute its eigenvalues or a subset thereof
and, if requested, the associated eigenvectors as well. Many scientific and en-
gineering applications lead to large eigenvalue problems. Examples come from
computational quantum chemistry, finite element modeling, multivariate statis-
tics, and density functional theory. There, problems become particularly chal-
lenging when a significant fraction of the eigenvalues and eigenvectors needs to
be computed [12]. From here on we will concentrate on the case that all the
eigenvalues and eigenvectors are desired.
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Efficient algorithms for the solution of symmetric eigenvalue problems usu-
ally consist of three stages. Matrix A is first reduced to a symmetric tridi-
agonal matrix T ∈ Rn×n by a sequence of orthogonal similarity transforms:
QT AQ = T , where Q ∈ Rn×n is the matrix representing the accumulation of
these orthogonal transforms. A tridiagonal eigensolver as, e.g., the MR3 algo-
rithm [7, 4] is then applied to matrix T to accurately compute its eigenvalues
and, optionally, the associated eigenvectors. Finally, when the eigenvectors of
A are desired, a back-transform has to be applied to the eigenvectors of T . In
particular, if TXT = XT Λ, with XT ∈ Rn×n representing the eigenvectors of
T , then X = QXT . Both the first and last stage cost O(n3) floating-point
arithmetic operations (flops) while the second stage based on the MR3 algorithm
only requires O(n2) flops. (Other algorithms for solving tridiagonal eigenvalue
problems, such as the QR algorithm, the Divide & Conquer method, etc. [9]
require O(n3) flops in the worst case.)

In this paper we re-evaluate the performance of the codes in LAPACK [1]
and the Successive Band Reduction (SBR) toolbox [5] for the reduction of a
symmetric matrix A to tridiagonal form. LAPACK routine sytrd employs
Householder reflectors, enhanced with WY representations [8], to reduce A di-
rectly to tridiagonal form. Only half of its operations can be performed in
terms of calls to Level-3 BLAS kernels, resulting in a poor use of the memory
hierarchy. To overcome this drawback, the SBR toolbox first reduces A to an
intermediate banded matrix B, and subsequently transforms B to tridiagonal
form. The advantage of this two-step procedure is that the first step can be
carried out using BLAS-3 kernels, while the cost of the second step is negligible
provided a moderate band width is chosen for B.

A similar study was performed by B. Lang in [11]. The conclusions from that
work were that the SBR toolbox could significantly accelerate the computations
of the reduction to tridiagonal form compared to the approach in LAPACK.
However, if the orthogonal transforms have to be accumulated, then the SBR
routines were not competitive. Our interest in this analysis is motivated by
the increase in the number of cores in general-purpose processors in the last
years and the recent advances in hardware accelerators like graphics processors
(GPUs). In particular, we aim at evaluating how the use of multiple cores in
these architectures affects the performance of the codes in LAPACK and the
SBR toolbox for tridiagonal reduction and back-transform. Note that, because
of the efficient formulation and practical implementation of the MR3 algorithm,
the reduction to tridiagonal form and the back-transform are currently the most
time-consuming stages in the solution of large symmetric eigenvalue problems.

The main contribution of this paper is a practical demonstration that the
use of GPUs turns SBR into a competitive approach for both the reduction to
tridiagonal form and the accumulation of transforms. This changes the main
message that was presented in [11].

The rest of the paper is organized as follows. In Sections 2 and 3 we review,
respectively, the routines in LAPACK and SBR for the reduction of a dense
matrix to tridiagonal form. We also propose a modification of the code in the
SBR toolbox to accelerate the initial reduction to banded form using a GPU.



Section 4 offers experimental results of the LAPACK and SBR codes on two
Intel-based workstations and an NVIDIA Tesla C1060 GPU. Finally, Section 5
summarizes the conclusions of our study.

2 The LAPACK Routine sytrd

Routine sytrd1 is based on the classical approach of reducing A to tridiagonal
form by a series of Householder reflectors H1, H2, . . ., Hn−2. Each Householder
reflector is an orthogonal matrix of the form Hj = I − βjuju

T
j , where βj ∈ R,

uj ∈ Rn with the first j entries zero, and I denotes here and in the following
the identity matrix of appropriate order. The purpose of each reflector Hj is
to annihilate the entries below the subdiagonal in the j-th column of Aj−1 =
HT

j−1 · · ·HT
2 HT

1 AH1H2 · · ·Hj−1.
The routine proceeds as follows. Let b denote the algorithmic block size

and assume that we have already computed the first j − 1 columns/rows of T .
Consider

HT
j−1 · · ·HT

2 HT
1 AH1H2 · · ·Hj−1 =




T00 TT
10 0

T10 A11 AT
21

0 A21 A22


 ,

where T00 ∈ Rj−1×j−1 is in tridiagonal form and A11 ∈ Rb×b. With this par-
titioning, all entries of T10 are zero except for the one in its top right corner.
Then, the following operations are computed during the current iteration of
sytrd:

1. The current panel
(

A11

A21

)
is reduced to tridiagonal form by a sequence

of b orthogonal transforms Hj ,Hj+1, . . . ,Hj+b−1. Simultaneously, two
matrices U,W ∈ R(n−j−b+1)×b are built such that

HT
j+b−1 · · ·HT

j+1H
T
j




T00 TT
10 0

T10 A11 AT
21

0 A21 A22


HjHj+1 · · ·Hj+b−1

=




T00 TT
10 0

T10 T11 TT
21

0 T21 A22 − UWT −WUT


 ,

where T11 is tridiagonal and all entries of T21 are zero except for its top
right corner.

2. The submatrix A22 is updated as A22 := A22 − UWT −WUT where, in
order to exploit the symmetry, only the lower (or the upper) triangular
part of this matrix is updated.

1We omit the first letter, denoting the precision. For example, SYTRD refers to the
LAPACK routines DSYTRD (double precision) and SSYTRD (single precision)



The simultaneous computation of U and W along with the reduction in
Operation 1 is needed to determine the first column of the unreduced part,
which defines the Householder reflector. While U simply contains the vectors
uj , uj+1, . . . , uj+b−1 of the Householder reflectors Hj , Hj+1, . . . , Hj+b−1, more
work is needed to determine W . In fact, the bulk of the computation in Op-
eration 1 lays in the formation of this matrix. For each reduced column in the
panel, a new column of W is generated. This requires four panel-vector multi-
plications and one symmetric matrix-vector multiplication with the submatrix
A22 as operand. The latter operation, computed with the BLAS-2 kernel symv,
is the most expensive one, requiring roughly 2(n− j)2b flops. Operation 2 also
requires 2(n− j)2b flops, but is entirely performed by the BLAS-3 kernel syr2k
for the symmetric rank-2b update. The overall cost of performing the reduction
A → T using routine sytrd is therefore 4n3/3 flops provided that b ¿ n.

Note that there is no need to construct the orthogonal factor Q = H1H2 · · ·Hn−2

explicitly. Instead, the vectors uj defining the Householder reflectors Hj are
stored in the annihilated entries of A. Additional work-space is needed to store
the scalars βj , but this requires only n− 2 entries and is thus negligible. If the
eigenvectors are requested, the back-transform QXT is computed by the LA-
PACK routine ormtr in 2n3 flops without ever forming Q. Using the compact
WY representation [6], this operation can be performed almost entirely in terms
of calls to BLAS-3 kernels.

3 The SBR Toolbox

The SBR toolbox is a software package for symmetric band reduction via or-
thogonal transforms. The package includes routines for the reduction of dense
symmetric matrices to banded form (syrdb), and the reduction of banded ma-
trices to narrower banded (sbrdb) or tridiagonal form (sbrdt). Accumulation
of the orthogonal transforms and repacking routines for storage rearrangement
are also provided in the toolbox.

In this section we describe the routines syrdb and sbrdt which, invoked
in that order, produce the same effect as the reduction of a dense matrix to
tridiagonal form via LAPACK routine sytrd. For the SBR routine syrdb, we
also describe how to off-load the bulk of the computations to the GPU.

3.1 Reduction to banded form

Assume that the first j − 1 columns of the matrix A have already been reduced
to banded form with bandwidth w. Let b denote the algorithmic block size, and
assume for simplicity that j + w + b − 1 ≤ n and b ≤ w; see Figure 1. Then,
during the current iteration of routine syrdb, the next b columns of the banded
matrix are obtained with the following sequence of operations:

1. Compute the QR factorization of A0 ∈ Rk×b, k = n− (j + w) + 1:

A0 = Q0R0, (1)



w

0 kA A0 1

b w−b

A2

k=n−(j+w)+1

j

j

Figure 1: Partitioning of the matrix during one iteration of syrdb for the
reduction to banded form.

where R0 ∈ Rb×b is upper triangular and the orthogonal factor Q0 is im-
plicitly stored as a sequence of b Householder vectors using the annihilated
entries of A0 plus b entries of a vector of length n − 2. The cost of this
first operation is 2b2(k − b/3) flops.

2. Construct the factors of the compact WY representation of the orthogonal
matrix Q0 = I +WSWT , with W ∈ Rk×b and S ∈ Rk×k upper triangular.
The cost of this operation is about kb2 flops.

3. Apply the orthogonal matrix to A1 ∈ Rk×w−b from the left:

A1 := QT
0 A1 = (I + WSWT )T A1 = A1 + W (ST (WT A1)). (2)

By computing this operation in the order specified in the rightmost ex-
pression of (2), the cost becomes 4kb(w − b) flops. In case the bandwidth
equals the block size (w = b), A1 comprises no columns and, therefore, no
computation is performed.

4. Apply the orthogonal matrix to A2 ∈ Rk×k from both the left and the
right sides with Y = WST :

A2 := QT
0 A2Q0 = (I + WY T )T A2(I + WY T ) (3)

= A2 + Y WT A2 + A2WY T + Y WT A2WY T . (4)

In particular, during this computation only the lower (or the upper) tri-
angular part of A2 is updated. In order to do so, (4) is computed as the



following sequence of calls to BLAS-3 kernels:

(symm) X1 := A2W, (5)

(gemm) X2 :=
1
2
XT

1 W, (6)

(gemm) X3 := X1 + Y X2, (7)
(syr2k) A2 := A2 + X3Y

T + Y XT
3 . (8)

The major cost of Operation 4 is in the computation of the symmetric matrix
product (5) and the symmetric rank-2b update (8), each with a cost of 2k2b flops.
On the other hand, the matrix products (6) and (7) only require 2kb2 flops
each. Therefore, the overall cost of this operation is approximately 4k2b+4kb2.
This is higher than the cost of the preceding Operations 1, 2, and 3, which
require O(kb2), O(kb2), and O(max(kb2, kbw)) flops, respectively. In summary,
provided that b and w are both small compared to n, the global cost of the
reduction of a full matrix to banded form is 4n3/3 flops. Furthermore, the bulk
of the computation is performed in terms of the BLAS-3 kernels symm and
syr2k in (5) and (8), so that high performance can be expected in case a tuned
BLAS is used.

The orthogonal matrix QB ∈ Rn×n for the reduction QT
BAQB = B, where

B ∈ Rn×n is the (symmetric) banded matrix, can be explicitly constructed
by accumulating the involved Householder reflectors at a cost of 4n3/3 flops.
Once again, the compact WY representation helps in casting this computation
almost entirely in terms of calls to BLAS-3. The SBR toolbox implements this
functionality in routine sygtr.

3.2 Reduction to banded form on the GPU

Recent work on the implementation of BLAS and the major factorization rou-
tines for the solution of linear systems [2, 3, 13] has demonstrated the potential
of GPUs to yield high performance on dense linear algebra operations which can
be cast in terms of matrix-matrix products. In this subsection we describe how
to exploit the GPU in the reduction of a matrix to banded form, orchestrating
the computations carefully to reduce the number of data transfers between the
host and the GPU.

During the reduction to banded form, Operation 4 is a natural candidate for
being computed on the GPU, while, due to the kernels involved in Operations 1
and 2 (mainly narrow matrix-vector products), these computations are better
suited for the CPU. Operation 3 can be performed either on the CPU or the
GPU but, in general, w − b will be small so that this computation is likely
better suited for the CPU. Now, assume that the entire matrix resides in the
GPU memory initially. We can then proceed to compute the reduced form by
repeating the following three steps for each column block:

1. Transfer A0 and A1 back from GPU memory to main memory. Perform
Operations 1, 2, and 3 on the CPU.



2. Transfer W and Y from main memory to the GPU.

3. Compute Operation 4 on the GPU.

Proceeding in this manner, upon completion of the algorithm most of the banded
matrix and the Householder reflectors are available in the main memory. Specif-
ically, only the diagonal b× b blocks in A remain to be transferred to the main
memory.

The construction of QB that produces the reduction to banded form can
also be easily done in the GPU, as this computation is basically composed of
calls to BLAS-3 kernels.

3.3 Reduction to tridiagonal form

Routine sbrdt in the SBR toolbox is responsible for reducing the banded matrix
B to tridiagonal form by means of Householder reflectors. Let QT denote the
orthogonal transforms which yield this reduction, that is QT

T BQT = T . On exit,
the routine returns the tridiagonal matrix T and, upon request, accumulates
these transforms, forming the matrix Q = QBQT ∈ Rn×n so that QT AQ =
QT

T (QT
BAQB)QT = QT

T BQT = T .
The matrix T is constructed in routine sbrdt one column at the time: at

each iteration the elements below the first subdiagonal of the current column are
annihilated using a Householder reflector; the reflector is then applied to both
sides of the matrix, resulting in a bulge which has to be chased down along the
band. The computation is cast in terms of BLAS-2 operations at best (symv
and syr2 for two-sided updates, and gemv and ger for one-sided updates) and
the total cost is 6n2w + 8nw2 flops.

If the eigenvectors are desired, then the orthogonal matrix QB produced
in the first step (reduction from full to banded form) needs to be updated
with the orthogonal transforms computed during the reduction from banded to
tridiagonal form building QBQT . This accumulation requires O(n3) flops and
can be reformulated almost entirely in terms of calls to BLAS-3 kernels, even
though this reformulation is less trivial than for the first step [5]. Furthermore,
the matrix Q = QBQT still needs to be applied as part of the back-transform
stage, to obtain X := QXT , adding 2n3 flops to the cost of building the matrix
containing the eigenvectors of A.

We do not propose to off-load the reduction of the banded matrix to tridi-
agonal form on the GPU as this is a fine-grained computation which does not
lend itself to an easy implementation on this architecture. However, the accu-
mulation of the orthogonal factor produced by this step and the back-transform
merely require operations alike the matrix-matrix product, which can be effi-
ciently computed on the GPU.



4 Experimental Results

The experimental results are reported for two target platforms representative
of recent multithreaded architectures:

– Neha: A workstation with two Intel Xeon QuadCore CPUs (E5520, Ne-
halem) at 2.27 GHz, with 8 MB L3 cache, 24 GB DDR3 RAM and theo-
retical peak performance of 145.3 GFLOPS in single precision using the 8
cores (1 GFLOPS = 109 flops/second).
Attached to a PCI-Express Gen2 interface is a NVIDIA Tesla C1060
GPU, with 240 single-precision processor cores running at 1.3 GHz, 4
GB GDDR3 RAM, and featuring a theoretical peak performance of 933
GFLOPS in single precision.

– Dunn: A workstation with four Intel Xeon six-core CPUs (7460, Dunning-
ton) at 2.66 GHz, 16 MB L3 cache, 256 GB DDR2 RAM, and theoretical
peak performance of 510.7 GFLOPS in single precision using the 24 cores.

GotoBLAS2 version 1.10 and 1.13 were employed for all computations per-
formed on Neha and Dunn, respectively. NVIDIA CUBLAS 2.3 built on top of
the CUDA application programming interface 2.3 together with NVIDIA driver
190.18 were used in our tests on the GPU. Single-precision arithmetic was em-
ployed in all experiments, though double precision is the standard in eigenvalue
computations. An experimental analysis of the analogous double precision rou-
tines offered a similar balance between the benefits of the LAPACK routine(s)
versus the SBR two-step alternative on the CPU. On the other hand, current
GPUs from NVIDIA are not competitive in double precision, partly due to the
much smaller number of double-precision cores and to the lack of an optimized
implementation of CUBLAS.

Evaluating the performance of the routines for the reduction to tridiagonal
form is an elaborate task, due to the large number of factors that have an
influence on it. Among them, we will focus on block size, bandwidth for the
SBR toolbox, and number of cores. In the experiments we aim at determining
the optimal configuration of these parameters, before proceeding to show a full
comparison of the two approaches. For simplicity, we report results for four
problem sizes: 2048, 6144, 10240 and 24576, and the best bandwidths w and
block sizes b detected in each case; a complete experiment was carried out for
many other values.

4.1 Building BLAS-2 and BLAS-3 kernels

We start by analyzing the performance of the kernels involved in the reduction to
condensed forms (tridiagonal and banded for the LAPACK and SBR approaches,
respectively). For the LAPACK routine sytrd, these are the symmetric matrix-
vector product (symv) and the symmetric rank-2k update (syr2k). For the
SBR routine syrdb, the kernels comprise the symmetric matrix-matrix product
(symm) and syr2k. Table 1 reports results on 1, 4 and 8 cores of the Intel Xeon



Nehalem processors in Neha. For the BLAS-3 kernels (symm and syr2k), we
also report their performance on the single GPU in this platform using the
implementation in CUBLAS as well as our own implementations, which cast
most computations in terms of the general matrix-matrix product [10] (column
labeled as “Our BLAS”). Table 2 collects the results of the analogous experiment
using 1, 4, 8, 16 and 24 cores of the Intel Xeon Dunnington processors in Dunn.
The matrix dimensions of syr2k and symm are chosen so that they match the
shape of the blocks encountered during the reduction to condensed forms (n is
the problem size, while k plays the role of the block size b for sytrd and that of
the bandwidth w for syrdb). For reference, we also include the performance of
the general matrix-vector product (gemv) and matrix-matrix product (gemm)
kernels.

The performance of symv increases with the number of cores and is signifi-
cantly higher than that of gemv. When the problem size is n = 2048, the matrix
fits into the L3 caches of Neha (8 MB) and Dunn (16 MB), which explains the
much higher GFLOPS rate of symv. The same does not hold for gemv as all
the matrix needs to be stored and not just half of it (lower or upper triangle).

The two BLAS-3 kernels present different performance behavior depending
on the system: both routines increase their GFLOPS rates with the number
of cores on Neha. On Dunn, kernel syr2k exhibits a performance line much
similar to that of Neha. On the other hand, the performance of kernel symm
scales with the number of cores on Dunn when the problem size is large relative
to it; otherwise, GotoBLAS2 simply reverts to using a single thread in the
execution (a clear example of this is the GFLOPS rates attained by this routine
for n=10240 and k=32 or 64 on 24 cores, which are identical to those attained
using a single core.) This behavior plays a key role in the global performance
of the whole reduction process.

The results also illustrate the performance delivered by the GPU for most
BLAS-3 kernels, higher than that offered by any of the CPUs evaluated. Al-
though our own implementations of the symmetric BLAS-3 kernels for the GPU
deliver a higher GFLOPS rate than those from CUBLAS, they are still quite
below the performance of the matrix-matrix product kernel in CUBLAS. The
improvement in the performance of the symm kernel is of particular relevance
for the reduction to tridiagonal form using the SBR routines.

4.2 The LAPACK approach

We next analyze the gains of a multi-core execution of the LAPACK routines
sytrd and, in case QXT is required, ormtr. Tables 3 and 4 report the ex-
ecution time (in seconds) for different values of problem size, block size b and
number of cores, on the two platforms.

Consider first the routine that performs the reduction from full to tridiagonal
form, sytrd. Obviously, the block size does not play a role in the performance
of it. Increasing the number of cores for the execution yields a reduction in the
execution time on Neha but with moderate speed-up; for example, 3x and 4.2x
speed-ups are attained for the largest problem sizes using respectively 4 and 8



symv. y := Ax + y gemv. y := Ax + y
A ∈ Rn×n symmetric, x, y ∈ Rn A ∈ Rn×n, x, y ∈ Rn

n 1 core 4 cores 8 cores 1 core 4 cores 8 cores

2048 8.26 34.5 60.0 5.15 8.47 8.31
6144 7.80 17.7 21.6 5.07 9.13 10.7

10240 6.69 18.3 22.1 4.70 9.26 11.2
24576 5.75 16.0 21.0 3.16 8.45 10.8

syr2k. C:= ABT + BAT + C gemm. C := ABT + C
A, B ∈ Rn×k, C ∈ Rn×n symmetric A, B ∈ Rn×k, C ∈ Rn×n

n k 1 core 4 cores 8 cores CUBLAS Our BLAS 1 core 4 cores 8 cores CUBLAS

2048
32 14.0 55.4 91.0 53.2 53.2 15.0 58.6 116.4 157.2
64 15.5 62.5 116.3 74.4 159.2 16.7 65.9 129.3 185.5
96 16.5 65.3 122.2 78.0 162.9 17.3 68.4 135.9 192.2

6144
32 13.6 50.3 89.6 55.9 56.0 15.0 59.6 106.9 161.0
64 15.7 59.8 112.3 78.4 124.2 16.7 66.6 123.1 185.0
96 16.8 64.4 122.6 81.8 126.3 17.4 69.2 137.8 195.1

10240
32 13.8 51.2 83.9 56.4 56.4 15.0 59.6 116.5 159.3
64 15.8 60.9 113.8 79.2 114.2 16.7 66.7 130.6 182.2
96 16.9 65.3 123.7 78.1 116.7 17.5 69.4 137.7 187.3

24576
32 13.9 51.0 89.9 57.4 53.4 14.7 58.3 108.9 156.0
64 16.0 60.9 113.6 79.1 116.9 16.6 64.6 129.9 186.2
96 16.5 65.1 123.9 83.4 112.2 17.3 68.8 137.5 189.9

symm. C := AB + C gemm. C := AB + C
A ∈ Rn×n symmetric, B, C ∈ Rn×k A ∈ Rn×n, B, C ∈ Rn×k

n k 1 core 4 cores 8 cores CUBLAS Our BLAS 1 core 4 cores 8 cores CUBLAS

2048
32 12.2 29.7 46.9 89.7 106.5 15.0 59.9 99.2 177.5
64 14.7 45.2 75.4 97.1 183.4 16.7 66.2 105.3 279.0
96 15.7 49.3 80.4 97.9 189.4 17.4 68.7 133.5 290.1

6144
32 11.9 28.5 42.9 94.1 129.6 15.1 59.5 116.7 327.5
64 14.5 43.9 71.8 99.1 188.4 16.8 66.5 132.2 339.3
96 15.6 48.5 77.5 100.4 198.1 17.5 69.3 132.2 338.2

10240
32 11.1 25.3 39.4 76.0 113.5 15.0 59.5 116.7 321.9
64 13.9 40.5 66.6 76.5 175.8 16.8 66.6 132.4 346.9
96 15.2 45.3 73.4 77.5 180.0 17.4 69.4 135.8 348.0

20480
32 10.8 24.8 37.9 77.8 110.0 14.7 58.3 108.4 328.0
64 13.5 39.3 63.3 66.8 176.7 16.6 66.0 131.3 344.9
96 15.0 44.6 65.7 65.9 179.0 17.3 68.9 135.3 346.0

Table 1: Performance (in GFLOPS) of the BLAS kernels symv (top), syr2k
(middle) and symm (bottom) and the corresponding matrix-vector and matrix-
matrix products (for reference) on Neha. Peak performance for 1, 4 and 8 cores
of this platform are 18.2, 72.6 and 145.3 GFLOPS, respectively.



symv. y := Ax + y gemv. y := Ax + y
A ∈ Rn×n symmetric, x, y ∈ Rn A ∈ Rn×n, x, y ∈ Rn

n 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores 16 cores 24 cores

2048 6.33 30.7 54.6 70.1 63.8 0.93 10.3 5.88 10.4 11.1
6144 2.07 8.98 4.04 7.35 15.2 0.76 2.86 2.00 3.26 4.97

10240 2.09 7.60 3.93 6.34 8.98 0.74 2.72 2.00 3.24 4.30
24576 2.07 7.72 3.89 6.18 8.84 0.63 2.41 2.00 3.24 4.64

syr2k. C:= ABT + BAT + C gemm. C := ABT + C
A, B ∈ Rn×k, C ∈ Rn×n symmetric A, B ∈ Rn×k, C ∈ Rn×n

n k 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores 16 cores 24 cores

2048
32 13.3 59.4 111.6 199.9 267.7 14.5 55.3 84.5 130.8 142.6
64 16.4 67.7 126.5 224.9 310.0 17.9 68.0 129.0 215.4 231.1
96 17.5 71.0 131.4 234.6 325.9 18.8 72.4 139.0 254.8 272.3

6144
32 10.4 45.5 31.09 56.6 117.2 12.7 48.3 42.2 65.1 78.4
64 14.8 61.3 59.10 105.4 188.4 17.1 66.7 80.9 125.6 135.4
96 16.4 66.8 83.25 145.6 243.9 18.2 71.8 113.8 182.7 192.5

10240
32 10.1 37.2 29.00 45.8 54.1 12.1 45.7 41.9 64.2 71.4
64 14.6 56.7 55.92 89.0 102.4 16.7 65.5 80.7 125.7 134.7
96 16.3 63.9 79.76 128.8 149.8 18.0 71.0 113.7 181.8 202.1

24576
32 9.49 34.9 28.73 43.7 52.2 11.2 42.8 42.0 64.2 76.1
64 14.6 56.0 55.72 85.5 101.7 16.7 65.5 81.6 126.4 150.3
96 16.3 63.7 79.39 125.1 147.9 18.1 71.5 115.6 185.0 220.8

symm. C := AB + C gemm. C := AB + C
A ∈ Rn×n symmetric, B, C ∈ Rn×k A ∈ Rn×n, B, C ∈ Rn×k

n k 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores 16 cores 24 cores

2048
32 12.5 44.5 67.5 12.2 12.2 14.4 55.1 84.9 130.0 138.6
64 15.3 55.3 100.8 160.3 15.1 17.8 67.3 128.0 215.9 210.1
96 16.6 60.3 106.4 147.4 220.8 18.8 71.4 137.2 253.7 269.3

6144
32 8.45 28.9 37.3 8.42 8.42 12.8 48.4 42.2 65.9 82.2
64 11.8 42.4 64.2 89.8 11.8 17.2 66.8 81.0 126.2 157.0
96 13.7 50.1 75.9 97.1 179.0 18.3 72.0 114.2 183.9 218.9

10240
32 8.23 28.7 37.0 8.20 8.20 12.1 45.9 41.9 64.3 71.7
64 11.6 42.3 64.0 102.9 11.6 16.8 65.6 80.8 125.9 140.4
96 13.5 50.2 76.9 114.8 194.3 18.1 71.1 113.7 182.1 203.6

24576
32 8.07 28.5 36.4 8.02 8.02 11.2 42.9 42.0 64.2 76.1
64 11.5 42.1 63.3 93.4 11.4 16.8 65.6 81.6 126.2 149.8
96 13.4 50.1 75.5 100.2 168.6 18.1 71.6 115.2 185.0 220.9

Table 2: Performance (in GFLOPS) of the BLAS kernels symv (top), syr2k
(middle) and symm (bottom) and the corresponding matrix-vector and matrix-
matrix products (for reference) on Dunn. Peak performance for 1, 4, 8, 16
and 24 cores of this platform are 21.3, 85.2, 170.4, 340.8 and 510.7 GFLOPS,
respectively.



sytrd: ormtr:
Full→Tridiagonal Compute QXT

n b 1 core 4 cores 8 cores b 1 core 4 cores 8 cores

2048
32 1.11 0.34 0.23 128 1.22 0.41 0.27
64 1.11 0.35 0.23 192 1.23 0.41 0.28
96 1.11 0.36 0.25 256 1.27 0.41 0.27

6144
32 40.4 11.4 9.2 128 28.8 8.60 5.20
64 39.9 11.3 8.4 192 28.2 8.32 5.09
96 40.1 11.3 10.4 256 29.0 8.46 5.08

10240
32 156.3 52.4 40.6 128 128.5 36.6 21.1
64 152.5 51.9 40.5 192 127.4 35.9 21.1
96 152.6 52.1 40.9 256 126.4 35.3 21.9

24576
32 2522 812.5 590.3 128 1767 488.1 275.2
64 2453 796.8 600.9 192 1732 471.5 272.0
96 2444 795.0 582.4 256 1720 466.0 262.7

Table 3: Execution time (in seconds) for the LAPACK routine on Neha.

sytrd: ormtr:
Full→Tridiagonal Compute QXT

n b 1 core 4 cores 8 cores 16 cores 24 cores b 1 core 4 cores 8 cores 16 cores 24 cores

2048
32 1.68 0.51 0.37 0.40 0.50 128 1.28 0.56 0.41 0.33 0.32
64 1.73 0.53 0.38 0.40 0.50 192 1.28 0.53 0.39 0.33 0.31
96 1.81 0.55 0.39 0.42 0.51 256 1.30 0.53 0.39 0.33 0.31

6144
32 89.5 15.3 33.2 14.6 8.63 128 32.5 12.0 9.05 7.05 6.41
64 88.9 15.6 33.0 14.8 7.44 192 30.8 11.2 8.27 6.54 5.70
96 90.6 16.3 33.7 15.3 8.23 256 31.0 11.2 8.22 6.47 5.87

10240
32 429.6 107.0 190.4 111.5 74.2 128 144.4 47.8 35.0 25.7 23.4
64 419.6 105.8 185.9 109.5 73.5 192 137.0 45.2 32.2 23.9 21.3
96 423.5 107.6 186.4 110.1 74.1 256 133.4 43.7 30.6 22.6 20.1

24576
32 6037 1591 2780 1742 1255 128 1933 561.5 375.9 255.1 230.3
64 5779 1529 2683 1681 1202 192 1798 518.3 336.4 229.0 182.4
96 5790 1534 2665 1668 1194 256 1752 498.5 320.2 211.8 178.7

Table 4: Execution time (in seconds) for the LAPACK routine on Dunn.

cores. The behavior in Dunn is quite inconsistent: the use of 4 cores delivers
superlinear gains in some cases (n=6144 yields a 5.81x factor) but, compared
with these, 8 cores increase the execution time, and 16 cores roughly match it.
24 cores result in the best timings, though speed-ups are poor; e.g., 2.2x, 3.8x
and only 5.7x for 8, 16 and 24 cores, respectively, with n=10240.

Applying the orthogonal transformations by the routine ormtr requires less
time and is, in general, more efficient than the reduction stage. This is to be
expected, as most of the computations in ormtr are performed by BLAS-3
kernels (gemm), while only half of those in sytrd are BLAS-3. Representative
speed-ups of routine ormtr in Neha are 3.7x and 6.6x, attained respectively
using 4 and 8 cores for the largest problem size. Efficiency in Dunn is still
reasonable for 4 cores, but rapidly drops for 8 and more cores. Note also that
this routine benefits from using larger block sizes (e.g., 192 and 256) than the



optimal for sytrd.

4.3 The SBR approach

We next study the parallelism of the two-step SBR approach: reduction of a
general matrix to banded form (syrdb) and subsequent reduction to tridiagonal
form (sbrdt). Also, we include in the analysis the routines that construct the
orthogonal factor Q (sygtr to build QB and sbrdt to accumulate Q = QBQT )
and compute QXT (gemm) in the back-transform. Remember that while the
computational cost of the first step is inversely proportional to the bandwidth
w, the cost of the second step is directly proportional to it. In other words, a
larger bandwidth requires a smaller amount of computation for the first step,
transferring more flops to the second step.

Tables 5 and 6 display results for these experiments on the two platforms.
For the discussion, consider the following five cases:

1. Reduction of a dense matrix to banded form (Step 1). On both platforms,
the usage of a larger number of cores or the increase of the bandwidth
results in a smaller execution time. The execution time on the GPU, on
the other hand, is quite independent of w and outperforms the Intel-based
architectures for all problem sizes except n=2048.

2. Reduction of banded matrix to tridiagonal form (Step 2). Using more
than a single core yields no gain. As expected, a larger value of w results
into a longer execution time of this step when using one core. For multi-
threaded implementations, there is a reduction in the execution time as
the bandwidth is increased. However, the execution time is still smaller
for the sequential execution even for those values of w.

3. Building the orthogonal factor resulting from Case 1 (Step 1). On the
Intel cores, the execution time and parallelism of routine sygtr is quite
similar to those of syrdb discussed in Case 1. Compared with the results
obtained on 8 cores of Neha, the GPU in this platform accelerates the
execution by a considerable factor, between 2.5x–3x.

4. Accumulating the orthogonal transforms corresponding to Case 2 (Step 2).
By far, this is the most expensive operation of the five cases in the Intel
cores, though it exhibits a certain degree of parallelism, which helps in
reducing its weight on the overall process. The speed-up attained by the
GPU for the larger problem dimensions is impressive.

5. Back-transform. The cost of this operation is comparable to that in Case 3.
The best result is always attained on 8 cores and the GPU yields a notable
acceleration.

Note that a study needs to take into account that the choice of bandwidth
cannot be done independently for different cases. Therefore, we delay further
comments on the data in the previous tables to the next subsection. There, we



1st step (syrdb): 2nd step (sbrdt):
Full→Band Band→Tridiagonal

n w 1 core 4 cores 8 cores GPU 1 core 4 cores 8 cores

2048
32 0.89 0.34 0.23 0.21 0.37 1.64 1.72
64 0.81 0.28 0.19 0.20 0.45 1.08 1.03
96 0.80 0.27 0.19 0.22 0.57 0.90 0.91

6144
32 23.6 8.3 5.2 2.78 3.48 14.93 17.1
64 20.8 6.2 3.7 2.27 4.88 9.92 10.1
96 19.9 5.9 3.6 2.29 5.42 8.23 8.91

10240
32 112.6 41.1 26.7 10.81 9.51 41.1 43.3
64 95.9 29.6 18.7 9.72 11.7 27.5 26.3
96 90.9 27.3 16.1 10.39 15.1 23.1 25.3

24576
32 1589 569.0 354.3 112.6 54.2 237.3 258.0
64 1330 404.3 235.5 99.3 72.9 159.2 157.7
96 1251 370.7 220.5 105.3 96.8 133.3 140.3

1st step (sygtr): 2nd step (sbrdt):
Build QB Accum. Q = QBQT

n w 1 core 4 cores 8 cores GPU 1 core 4 cores 8 cores GPU

2048
32 0.81 0.33 0.25 0.07 2.31 1.28 1.38 0.76
64 0.73 0.26 0.20 0.04 1.86 0.83 0.55 0.42
96 0.70 0.25 0.19 0.03 1.61 0.54 0.36 0.26

6144
32 21.2 7.35 7.04 1.68 65.4 33.0 35.7 6.24
64 19.0 5.83 3.86 1.77 51.8 22.1 14.5 3.09
96 18.3 5.62 3.67 1.75 44.3 14.5 9.5 1.74

10240
32 97.5 32.5 22.7 6.81 291.0 150.8 163.4 32.4
64 87.5 25.6 17.2 6.44 235.1 102.3 66.6 12.6
96 84.1 24.7 16.5 5.61 203.1 67.2 43.9 6.27

24576
32 1399 456.8 310.7 94.6 4149 2166 2403 101.8
64 1232 353.0 217.3 88.0 3390 1465 956.6 55.3
96 1177 377.7 207.6 81.0 2898 969.9 638.8 30.9

Back-transform (gemm):
Comp. QXT

n 2048 6144 10240 24576

8 cores 0.12 3.36 15.0 209.5
GPU 0.07 1.50 6.46 89.3

Table 5: Execution time (in seconds) for the SBR routines on Neha.



1st step (syrdb): 2nd step (sbrdt):
Full→Band Band→Tridiagonal

n w 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores

2048
32 0.89 0.52 0.36 0.74 0.77 0.43 3.73 3.84
64 0.80 0.41 0.29 0.28 0.65 0.54 2.66 2.62
96 0.79 0.38 0.27 0.27 0.28 0.78 2.28 2.30

6144
32 30.1 10.7 8.75 20.2 19.7 3.98 33.7 34.8
64 22.8 7.74 5.60 3.97 15.1 5.48 24.3 23.9
96 21.2 6.85 4.80 3.57 27.8 8.85 21.1 21.2

10240
32 145.6 44.7 39.4 98.7 97.2 10.7 94.0 96.9
64 106.5 31.5 23.3 15.8 68.9 18.5 67.8 66.6
96 97.5 28.0 19.2 13.6 10.2 29.6 59.3 59.1

24576
32 2137 592.2 525.5 1400 1379 85.1 541.5 559.4
64 1483 401.5 296.5 198.2 950.5 136.0 391.9 384.6
96 1342 354.3 236.5 166.4 119.2 202.3 345.8 342.0

1st step (sygtr): 2nd step (sbrdt):
Build QB Accum. Q = QBQT

n w 1 core 4 cores 8 cores 16 cores 24 cores 1 core 4 cores 8 cores 16 cores

2048
32 0.96 0.54 0.41 0.77 0.79 3.08 8.36 4.07 8.95
64 0.81 0.41 0.31 0.28 0.60 2.23 3.36 2.49 6.53
96 0.76 0.37 0.28 0.27 0.27 1.73 2.34 0.72 5.13

6144
32 29.8 11.0 10.3 20.9 20.9 96.5 155.1 100.8 149.9
64 22.6 8.21 6.64 5.06 15.1 67.2 43.0 61.5 97.5
96 20.8 7.33 5.65 4.49 3.89 53.3 28.9 14.4 75.8

10240
32 145.1 45.3 44.5 98.2 97.0 468.0 665.9 463.1 616.6
64 106.6 33.8 27.8 20.4 69.3 323.3 155.2 284.5 382.5
96 97.1 30.6 23.5 17.9 15.2 254.8 103.0 60.3 296.1

24576
32 2268 619.7 552.9 1469 1446 7194 8471 6724 7469
64 1531 423.6 323.4 230.9 988.7 4826 1403 4113 4133
96 1363 376.3 262.8 196.3 151.2 1160 988.2 793.0 3145

Back-transform (gemm):
Comp. QXT

n 2048 6144 10240 24576

24 cores 0.09 1.48 6.56 80.8

Table 6: Execution time (in seconds) for the SBR routines on Dunn.



Reduction to tridiagonal form
LAPACK SBR

n Neha Dunn Neha Neha+GPU Dunn

2048 0.23 0.37 0.6 0.58 0.79
6144 8.4 7.44 8.58 6.26 9.45

10240 40.5 73.5 30.4 20.32 34.3
24576 582.4 1194 308.4 166.8 321.5

Reduction to tridiagonal form and back-transform
LAPACK SBR

n Neha Dunn Neha Neha+GPU Dunn

2048 0.50 0.68 1.77 1.12 3.14
6144 13.5 13.1 29.0 12.7 44.5

10240 61.6 93.6 116.8 43.8 151.3
24576 845.1 1371.7 1416.7 403.3 1486.3

Table 7: Comparison of the execution time (in seconds) for the the LAPACK
and SBR routines on Neha and Dunn.

elaborate on the optimal combination of the factors that determine the overall
performance of this approach.

4.4 Comparing the two approaches

Even though the routines that tackle the symmetric eigenvalue problem are
nicely structured as a sequence of steps, these are not independent. As a con-
sequence, the tuning of parameters for each step in general cannot be done
separately. For example, the bandwidth has to be kept constant through all the
routines involved in the reduction. The block size, instead, can be adjusted for
each routine. Additionally, on the multi-core processors, one may choose the
degree of parallelism for each routine by fixing the number of threads employed
for its execution. As an example, consider the reduction to tridiagonal form of
a problem of size n = 10240 when performed on Dunn using the SBR routines.
For bandwidths w = 32, 64 and 96, the best timings for the reduction to banded
form using the corresponding SBR routine are 39.4, 15.8, and 10.2 seconds, us-
ing 8, 16 and 24 cores, respectively. The cost for the next stage, reduction from
banded to tridiagonal form, is minimized when a single core is used, resulting in
10.7, 18.5 and 29.6 seconds for bandwidths 32, 64 and 96, respectively. Overall,
the best combination, totaling 33.9 seconds, corresponds to bandwidth 64, using
16 cores for the first step and a single core for the second.

In Table 7, we collect results for an experimental comparison of the two
approaches on the three architectures: Neha, the GPU in this platform for
all steps except the reduction from banded to tridiagonal form using the SBR
routines (labeled as “Neha+GPU”), and Dunn. For small and middle prob-
lem sizes, LAPACK is the fastest approach. For the largest dimensions, the
SBR approach greatly benefits from the acceleration enabled by the GPU, and
outperforms LAPACK both in the reduction and back-transform stages.



In the reduction stage, the GPU delivers speed-ups of 1.49x and 1.85x for the
two largest problem sizes compared with the best options (SBR or LAPACK)
on any of the two Intel-based architectures. When the back-transform is also
required, the speedups for these problem sizes become 1.29x and 2.69x.

5 Concluding Remarks

We have evaluated the performance of existing codes for the reduction of a dense
matrix to tridiagonal form and back-transform in the context of the symmet-
ric eigenvalue problem. Two modern Intel 8-core and 24-core platforms were
employed in this evaluation, representative of current high-end processors.

Our experimental results confirm that the two-stage approach proposed in
the SBR toolbox (reduction from full to banded form in the first stage followed
by a reduction from banded to tridiagonal form in a second stage) delivers
a higher parallel scalability than the LAPACK-based alternative on general-
purpose multi-core architectures. However, when the orthogonal factors that
define the back-transform have to be constructed and applied in the last stage,
this results in a computation time considerably larger than that for LAPACK.

The use of a hardware accelerator like a GPU changes the message: By off-
loading the level-3 BLAS operations in the SBR codes to an NVIDIA 240-core
GPU, remarkable speed-ups are attained to the point that the SBR toolbox
becomes a competitive alternative to the standard LAPACK-based one. The
reward did not come effortless, though. Specifically, the gains came from two
improvements: 1) a reformulation of the CUBLAS symmetric rank-2k update
and the symmetric matrix-matrix product, and 2) a careful modification of
the SBR routines to exploit the hardware elements of the hybrid CPU-GPU
architecture and to minimize the number of data transfers between the host
and the device memory spaces.
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